Stochastic Modeling/Machine Learning Publications of Kenneth Paul Baclawski
- 1. K. Baclawski, M. Cerasoli and G.-C. Rota. Introduction to Probability and Random Processes. Unione Matematica Italiana, Bologna, Italy. (1984)
- 2. K. Baclawski. An algorithm for generating random accesses. Northeastern University, College of Computer Science. (1988)
- 3. K. Baclawski. A stochastic model of data access and communication. Advan. in Applied Math. 10:175-200. (1989)
- 4. K. Baclawski, S. Contractor and R. Wilmot. File access patterns: self-similarity and time evolution. NU-CCS-89-19. Northeastern University, College of Computer Science. (1989)
- 5. K. Baclawski. An algorithm for generating random accesses. Northeastern University, College of Computer Science. (1990)
- 6. K. Baclawski. An algorithm for generating random accesses. Northeastern University, College of Computer Science. (1992)
- 7. K. Alexander, K. Baclawski and G.-C. Rota. A stochastic interpretation of the Riemann Zeta function. Proc. Nat. Acad. Sci. 90:697-699. (January 1993) [pdf]
- 8. K. Baclawski. TPET: A TP systems emulation tool. Northeastern University, College of Computer Science. (1992)
- 9. K. Baclawski and J.E. Smith. KEYNET: Fast indexing for semantically rich information retrieval. NU-CCS-94-06. Northeastern University, College of Computer Science. (1994) [pdf]
- 10. J. Gray, P. Sundaresan, S. Englert, K. Baclawski and P. Weinberger. Algorithms for quickly generating very large synthetic databases. Digital Equipment Corporation. (1993)
- 11. J. Gray, P. Sundaresan, S. Englert, K. Baclawski and P. Weinberger. Quickly generating billion record synthetic databases. In Proc. ACM SIGMOD Conference 243-252. (1994) [pdf]
- 12. K. Baclawski. Distributed Computer Database System And Method. United States Patent and Trademark Office. (December 2, 1997) [pdf]
- 13. K. Baclawski. Distributed Computer Database System And Method Employing Intelligent Agents. United States Patent and Trademark Office. (February 20, 2001) [pdf]
- 14. K. Baclawski. Search System And Method Based On Multiple Ontologies-B1. United States Patent and Trademark Office. (July 23, 2002) [pdf]
- 15. K. Baclawski. Distributed Computer Database System And Method For Performing Object Search. United States Patent and Trademark Office. (October 8, 2002) [pdf]
- 16. K. Baclawski. Knowledge Extraction System And Method. United States Patent and Trademark Office. (October 22, 2002) [pdf]
- 17. K. Baclawski and T. Niu. Ontologies for Bioinformatics. MIT Press, Cambridge, MA. (October 2005) [ONTOBIO Website]
- 18. K. Baclawski. Distributed Computer Database System And Method Employing Hypertext Linkage Analysis. United States Patent and Trademark Office. (January 7, 2003) [pdf]
- 19. K. Baclawski. Distributed Computer Database System And Method Employing Intelligent Agents. United States Patent and Trademark Office. (March 18, 2003) [pdf]
- 20. K. Baclawski. Classification Of Information Sources Using Graph Structures. United States Patent and Trademark Office. (July 22, 2003) [pdf]
- 21. K. Baclawski. Bayesian network development. In International Workshop on Software Methodologies, Tools and Techniques 18-48. (September 2004) [pdf][ppt][links]
- 22. K. Baclawski. The Bayesian Web. The Harvard Medical School. (2004) [pdf]
- 23. K. Baclawski. Knowledge Extraction System and Method. The United Kingdom Patent Office. (September 7, 2004) [pdf]
- 24. K. Baclawski. Classification Of Information Sources Using Graphic Structures. United States Patent and Trademark Office. (August 3, 2004) [pdf]
- 25. K. Baclawski. Information Retrieval Apparatus for Processing a Query for Retrieval of Information from a Database. The United Kingdom Patent Office. (November 2, 2004) [pdf]
- 26. K. Baclawski. Probabilistic foundations of meta-analysis. Talk at the Harvard School of Public Health . (March 4, 2005) [pdf][ppt]
- 27. K. Baclawski. The Bayesian Web: Adding Reasoning with Uncertainty to the Semantic Web. Bio-IT Conference . (April 4, 2006) [pdf][ppt][Website]
- 28. K. Baclawski. Probability and the Web. In Probability Panel. Ontolog Forum. (March 29, 2007) [pdf][ppt][Meeting page]
- 29. K. Baclawski. Introduction to Probability with R. CRC Press. (January 23, 2008)
- 30. K. Baclawski and T. Niu. Bioinformatics. Jaico Publishing, Mumbai, India. (2007)
- 31. K. Baclawski. Search System and Method Based on Multiple Ontologies. European Patent Office. (February 14, 2007)
- 32. K. Baclawski. Solutions Manual for Introduction to Probability with R. CRC Press. (June 2008)
- 33. K. Baclawski. Introduction to Probability with R website. Website (2008)
- 34. K. Baclawski. Situation Awareness and Decision Making. (February 12, 2015) [pdf]
- 35. K. Baclawski. Applications of Self-Awareness, Situation Awareness and Feedback Control. College of Computer and Information Science, Northeastern University. (May 19, 2015) [pdf]
- 36. K. Baclawski, E.S. Chan, D. Gawlick, A. Ghoneimy, K. Gross, Z.H. Liu and X. Zhang. Framework for Ontology-Driven Decision Making. Applied Ontology 12(3-4):245-273. IOS Press, The Netherlands. https://bit.ly/2LYPszt (2017) [pdf]
- 37. K. Baclawski, K. Gross, E.S. Chan, D. Gawlick, A. Ghoneimy and Z.H. Liu. Self-Adaptive Dynamic Decision Making Processes. In IEEE Conference on Cognitive and Computational Aspects of Situation Management . http://bit.ly/2fOG9G2 (2017) [pdf]
- 38. K. Gross, K. Baclawski, E.S. Chan, D. Gawlick, A. Ghoneimy and Z.H. Liu. A Supervisory Control Loop with Prognostics for Human-in-the-Loop Decision Support and Control Applications. In IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA 2017) . http://bit.ly/2fPlG45 (2017) [pdf]
- 39. K. Baclawski. Toward Combining Ontologies and Machine Learning for Improving Decision Making. In Ontology Summit 2017: AI, Learning, Reasoning, and Ontologies. http://bit.ly/2DVUS9D (March 15, 2017) [pdf][links]
- 40. K. Baclawski. The observer effect. In IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA 2018) . (June 11-14, 2018) [pdf]
- 41. K. Baclawski. A probabilistic time reversal theorem. In IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA 2018) . (June 11-14, 2018) [pdf]
- 42. K. Baclawski, M. Bennett, G. Berg-Cross, D. Fritzsche, R. Sharma, J. Singer, J. Sowa, R.D. Sriram, M. Underwood and D. Whitten. Ontology Summit 2019: Structure and Discourse. http://bit.ly/2WTduUB (1990) [links]
- 43. E. Wetherbee, K. Baclawski, G. Wang, K. Gross, A. Chystiakova, D. Gawlick, Z. Liu and P. Sonderegger. System and Method for Ensuring that the Results of Machine Learning Models can be Audited. United States Patent and Trademark Office. (April 2, 2024) [pdf]
- 44. M. Liu, P. Sonderegger, K. Baclawski, D. Gawlick, A. Chystiakova, G. Wang, Z.H. Liu, H. Balasubramanian and K.C. Gross. Optimizing a Prognostic-Surveillance System to Achieve a User-Selectable Functional Objective. United States Patent and Trademark Office. (February 2, 2023) [pdf]
- 45. J. Courtney, K. Baclawski, D. Gawlick, K.C. Gross, G. Wang, A. Chystiakova, P. Sonderegger and Z.H. Liu. Machine Learning Traceback-Enabled Decision Rationales as Models for Explainability. United States Patent and Trademark Office. (July 28, 2022) [pdf]
- 46. J. Rohrkemper, P. Sonderegger, A. Chystiakova, K. Baclawski, D. Gawlick, K.C. Gross, Z. Liu and G. Wang. Root Cause Analysis for Deterministic Machine Learning Model. United States Patent and Trademark Office. (March 2, 2023) [pdf]
- 47. J. Rohrkemper, K. Baclawski, D. Gawlick, K.C. Gross, G. Wang, A. Chystiakova, P. Sonderegger and Z. Liu. Recommendation Generation Using Machine Learning Data Validation. United States Patent and Trademark Office. (May 18, 2023) [pdf]
- 48. P. Sonderegger, K. Baclawski, G. Wang, A. Chystiakova, D. Gawlick, Z.H. Liu and K.C. Gross. Automatically adapting a prognostic-surveillance system to account for age-related changes in monitored assets. United States Patent and Trademark Office. (October 10, 2023) [pdf]
- 49. K. Baclawski, D. Gawlick, K.C. Gross and Z.H. Liu. Prognostic-Surveillance Technique that Dynamically Adapts to Evolving Characteristics of a Monitored Asset. United States Patent and Trademark Office. (October 24, 2023) [pdf]
- 50. M. Gerdes, K. Baclawski, D. Gawlick, K.C. Gross, G. Wang, A. Chystiakova, P. Sonderegger and Z.H. Liu. Dependency Checking for Machine Learning Models. United States Patent and Trademark Office. (November 23, 2023) [pdf]
- 51. K. Ru, K. Baclawski, P. Sonderegger, D. Gawlick, A. Chystiakova, G. Wang, M. Gerdes and K.C. Gross. Bias Detection in Machine Learning Tools. United States Patent and Trademark Office. (August 1, 2024) [pdf]
Color Key
Article |
Book |
Conference |
Patent |
Report |
Software |
Other |
|
General List of Publications
Categorized List of Publications