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SYSTEM AND METHOD FOR ENSURING
THAT THE RESULTS OF MACHINE
LEARNING MODELS CAN BE AUDITED

BACKGROUND

With the reduction of the cost of sensor and processor

technology, sensors are added to or associated with compo-
nents of electrical, mechanical, distribution, and other sys-
tems to enable sensor-based automation. These sensors
generate a flood of information describing the behavior of
the components which 1s stored, at least for a time, in
databases. Machine learning algorithms may be applied to
the sensed information to enable prognostics, anomaly dis-
covery/detection, and predictive maintenance for system
components monitored by sensors.
Examples of sensor-based automation can be found in the
clectrical utility, o1l-and-gas, environmental and water qual-
ity monitoring, data processing, manufacturing, passenger
and cargo transportation, and even financial service sectors.
In these sectors, behavior of equipment or systems and/or
decisions made by machine learning processes may be
subject to review by regulators. Such review may be based
on the stored sensor information, and hefty fines for the
offending entity may result from stored sensor information
that shows non-compliant behavior. It 1s therefore worth-
while for the regulated entity and the regulator to be able to
ensure that stored sensor information 1s not corrupted or
tampered with.

For this and other reasons, what 1s needed 1s a technique
for effectively and efliciently ensuring that the results of
machine learning models assuring can be audited.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
systems, methods, and other embodiments of the disclosure.
It will be appreciated that the illustrated element boundaries
(e.g., boxes, groups of boxes, or other shapes) 1n the figures
represent one embodiment of the boundaries. In some
embodiments one element may be implemented as multiple
clements or that multiple elements may be implemented as
one element. In some embodiments, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore,
clements may not be drawn to scale.

FIG. 1 illustrates one embodiment of a system associated
with ensuring that the results of machine learning models
can be audited.

FIG. 2 illustrates one embodiment of a method associated
with ensuring that the results of machine learning models

can be audited.

FIG. 3 illustrates a flowchart of one embodiment of an
process associated with ensuring that the results of machine
learning models can be audited.

FIG. 4 1illustrates a schematic of one embodiment of
storing change records from intelligent data preprocessing in
an example IDP model.

FIG. § illustrates a schematic of one embodiment of an
MSET model training process associated with ensuring that
the results of machine learning models can be audited.

FIG. 6 illustrates a schematic of one embodiment of an
MSET model limiting process associated with ensuring that
the results of machine learning models can be audited.
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FIG. 7 1llustrates a schematic of one embodiment of a data
compression process associated with ensuring that the

results of machine learning models can be audited.

FIG. 8A illustrates a first example data report format
resulting from one embodiment of a data compression
process.

FIG. 8B illustrates a second example data report format
resulting from another embodiment of a data compression
process.

FIG. 9 1llustrates a schematic of one embodiment of a data
reconstruction process using a first data report format.

FIG. 10 illustrates a schematic of one embodiment of a
data reconstruction process using a second data report
format.

FIG. 11 illustrates an example computing device that 1s
configured and/or programmed with one or more of the
example systems and methods described herein, and/or
equivalents.

DETAILED DESCRIPTION

Systems and methods are described herein that ensure that
the results of machine learning models can be audited.

Sensors such as Internet-of-Things (IoT) sensors may be
added to physical devices to monitor the operation of those
devices. These sensors can be numerous, especially 1n
dense-sensor industries such as utilities, o1l & gas, and
manufacturing. For example, an o1l refinery can include over
one million sensors. A utility grid can include well 1n excess
of that number, especially when sensors for supervisory
control and data acquisition (SCADA) on utility assets such
as generating stations and transformer substations and sen-
sors for advanced metering infrastructure (AMI) are taken
into consideration. The data from these sensors may be
stored as time-series—a series of data points indexed 1n time
order, or pairs of values and associated time. The time-series
data may be stored 1n time-series databases—database sys-
tems optimized for storing and serving time series. Accord-
ingly, the utility industry can generate very large time-series
databases of sensor readings, on the order of petabytes or
greater.

Note that systems that ingest large volumes of time series
signals that originate from systems with physical transducers
will collect erroneous time-series values from failing physi-
cal transducers/sensors. It may be the case that some pro-
portion of the sensors are degrading and/or could be failed
with “stuck-at” faults, permanently signaling one value,
regardless of input. It may also be the case that there may be
intermittent problems with sensors or with upstream data-
acquisition and/or data-aggregation electronics, individual
time series may contain missing values. When these types of
anomalies are undiscovered when the time-series data 1s
captured into a time-series database, the anomalies aflect
subsequent uses of the data stored in the time-series data-
base. For example, where the time-series data 1s used for
product development or other scientific purposes, the accu-
racy of data analyses, and 1n some cases the soundness of
conclusions drawn, will be negatively impacted by the
above types of anomalies. The systems and methods
described herein also enable a solution to this problem by
providing for signal validation and sensor operability vali-
dation for time-series databases that originate from sensors
monitoring critical assets.

Machine learming (ML) algorithms may be applied to
sensor data stored 1n time-series databases to enable prog-
nostics, anomaly discovery/detection, and predictive main-
tenance for devices monitored by sensors. This may be
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referred to as automated prognostic surveillance. One aspect
of growing importance in dense-sensor industries, especially
for utilities, 1s the ability to explain to regulators, insurance
investigators, and end customers why a prognostic ML
algorithm flagged one or more signals as anomalous, and of
equal importance, why the ML did not raise alerts. Accord-
ingly, the systems and methods described herein provide
“auditability assurance™ for pattern recognition ML deter-
minations.

Industries such as utilities that make use of automated
prognostic surveillance systems must satisty legal require-
ments and are heavily subject to government regulations.
For example, utilities 1n the United States are subject to
local, county, state, and federal regulations including addi-
tional federal regulation from the Umnited States Nuclear
Regulatory Commission (USNRC) 1f the utility operates
nuclear plants, as well as additional regulations from the
North America Electric Reliability Corporation (NERC) and
the Federal Energy Regulatory Commission (FERC). In
principle, such requirements and regulations may involve
submitting data for legal or regulatory purposes. However,
submitting the entire mass of petabytes of data that underlies
the decisions made by these large automated systems 1s
infeasible, not only because of the enormous size of the data
sets but also because very little of the data 1s persistently
stored 1n a manner that would make such submissions
possible.

Techniques for extracting data for legal and regulatory
purposes are oiten subject to some or all of the following
disadvantages: (1) the technique may select data using ad
hoc, as-needed, or arbitrary criteria without a rigorous,
theoretical basis; (11) the selected data sets for the technique
are 1nadequate for recovering the original source data; and
(111) the technique may make 1t possible to hide violations of
regulatory requirements because of the 1nability to recover
the original source data. Indeed, regarding the third disad-
vantage, 1t 1s reported that this has actually occurred in
practice.

In particular, the lack of recoverability of original source
data leads to an unnecessary adversarial relationship
between industry and government. For example, electrical
utilities operating in Califormia are required to maintain a
minimum 10% generation overhead cushion throughout
cach month, that 1s, whatever the demand 1s during any
given day and time, there 1s at least 10% overhead or “spare™
capacity, so that if one generating asset or grid transmission
asset should suddenly fail, a total blackout 1s unlikely due to
the overhead capacity. The utilities are required to submit
monthly collections of time series data to the Califorma
Public Utilities Commission (PUC), to demonstrate that the
utility maintained the minimum 10% generation overhead
cushion throughout each month. Every time that generation
capacity of the utility drops below the 10% generation-
overhead cushion, the PUC imposes a significant fine (which
can happen multiple times per month). The PUC scrutinizes
the time-series signals very carefully because the PUC
automatically assumes that the utility has an incentive to
adjust some time series values to make 1t appear that
generation capacity never drops below the 10% threshold.
Similarly, the utility automatically assumes that the PUC has
an 1centive to adjust some time series values to make 1t
appear that generation capacity dropped a fraction of a
percent below the 10% threshold, thereby extracting signifi-
cant fines from the utility.

These disadvantages (including the distrust on both sides)
are eliminated by the systems and methods described herein
that ensure that the results of machine learming models can
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be audited. In one embodiment for ensuring auditability, the
following information should be retained, for example 1n a
journal of changes to the database:

Sensed time-series data (for example, including time-
stamped sensor readings and user associated with the
sensor mput, 1f any);

Descriptions of the sensors (for example, a sensed asset
associated with the sensor, an operational state of the
sensor at the time of the measurement);

Descriptions of the sensed assets (for example, a version
of the asset at the time of the measurement, a record of
a relationship between the asset and other assets—such
as a temporal 1stance graph or temporal bill of mate-
rials);

A ‘knowledge’ state at the time of the measurement (for
example, one or more particular machine learning
models, particular conditions, and particular data used
at the time of the analysis); and

Identification of a version of machine learning model
creation software and a data set used to develop par-
ticular machine learning models and analyze sensor
readings.

Note that the sensed time-series data may be very bulky.
In one embodiment, nstead of a bulky data extract, a
relatively small, but salient (or most prominent or important,
collection of data can be saved from which one can recover
a close approximation to the original data, which 1s suilicient
for legal and regulatory requirements. A collection of saved
data with this property of recoverability—that 1s, recover-
ability of the approximation of the original data from the
saved data—is referred to herein as a “tamper-proof” data
set. In one embodiment, the creation of a tamper-prootf data
set may involve one or more of the techniques described 1n
“Intelligent Preprocessing of Multi-Dimensional Time-Se-
ries Data”, inventors D. Gawlick, K. C. Gross, Z. H. Liu, and
A. Ghoneimy, U.S. patent application Ser. No. 15/925,427,
filed Mar. 19, 2018, which 1s hereby incorporated by refer-
ence herein 1n its entirety. While a malicious actor 1s not
necessarily prevented from altering the original data, or even
from altering the tamper-prootf data set, but the systems and
methods disclosed herein positively ensure that such tam-
pering will be discovered 1n an audit conducted according to
the procedures described herein.

In one embodiment, the systems and methods described
herein thus enable creation of a close approximation to the
original source data with a relatively small amount of
processed data—a tamper-prool data set—which can be
used to satisiy legal and regulatory requirements. Further,
the tamper-proof data set can be used to satisiy these
requirements while still accommodating machine-learning
signal validation and sensor operability validation tech-
niques.

In one embodiment, the processing technique for extract-
ing the tamper-proof data set exhibits three advantageous
properties:

Determinism: The processed data of the tamper-proof
data set 1s uniquely determined by the input data
without any randomness.

Compression: The processed data of the tamper-proof
data set 1s relatively small compared with the input
data. In practice, the processed data of the tamper-proof
data set may be several orders of magnitude smaller.

Reversibility: It 1s possible to recover a relatively close
approximation to the original source data from the
processed data of the tamper-proot data set. In practice,
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the degree of approximation 1s determined by the legal

and regulatory requirements, and may be adjusted to

satisiy these requirements.
Processing techniques such as the Multivanate State Esti-
mation Techmique (MSET) exhibit the properties of deter-
minism, compression, and reversibility and accordingly 1s
used 1n one embodiment of this mvention. But, any pro-
cessing technique for extracting a data set that satisfies the
three properties above can be used for the creation of a
tamper-proof data set in accordance with the systems and
methods described herein.

In one embodiment, in addition to the three properties
above, automated techniques for determining whether the
legal and regulatory requirements have been met based on
the tamper-proof data set and historical provenance infor-
mation (which tracks changes to the database, but does not
assure data integrity). If the requirements have not been met,
the system may determine the appropriate legal remedies or
government fines. By making the legal and regulatory pro-
cesses fully transparent to all parties, the motivation for
attempting to hide violations and the adversarial relationship
can be reduced significantly or even eliminated.

In one embodiment, the systems and methods described
herein improve existing ML surveillance systems to which
they are applied, causing increased accuracy of alerts and
reducing false alarm rates for ML prognostic anomaly
discovery. Note that these improvements may be realized by
the implementation of the systems and methods described
herein, and do not require hardware upgrades anywhere in
the systems in which they are implemented. The systems and
methods described herein are therefore immediately back-
ward compatible with any existing IoT system. This 1s
particularly advantageous i1n the power utility, o1l & gas,
manufacturing, and aviation industries where legacy sensor
data collection systems are already in place and would
require significant labor to upgrade.

The systems and methods described herein are described
with reference to the power utility sector, but clearly have
application wherever IoT sensor time series data 1s collected
and used, for example 1n the o1l & gas, manufacturing, and
aviation sectors. In one embodiment, the systems and meth-
ods described herein may be applied 1in processing of
streaming digitized data for utility assets inside generating
facilities (for example, coal power plants, o1l power plants,
nuclear power plants, wind turbines, geothermal generators,
gas turbine power plants, and others, as well as critical assets
in the power distribution grid, such as transformers, substa-
tions, and SCADA systems).

—Auditability 1n Time-Series Processes for Utility Prog-
nostics—

In one embodiment, a method and process for ensuring
that the results of machine learning models can be audited
includes features of (1) tamper-proofing, (11) snapshot 1sola-
tion, (111) journaling, (1v) activity journaling, and (v) data
provenance recording.

In one embodiment, tamper-proofing 1s a process or
system configuration to ensure that malicious data modifi-
cation (tampering) or accidental data modification (corrup-
tion) will be detected. In one embodiment, compact records
that will expose any changes to the original data can be
included in an audit report.

Anomalous values 1n time series data may be 1identified by
ML processing of the raw time series data to produce
estimates of what the values ‘ought to be’ in the context of
surrounding data. Neural networks (NNs) and support vector
machines (SVMs) may be employed for anomaly detection.
MSET (and variants such as Oracle’s proprietary advanced
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MSET pattern recognition “MSET2”) may also be employed
for anomaly detection. All three approaches (NNs, SVMs,
and MSET) are, on a black-box level, Nonlinear nonpara-
metric (NLNP) regression algorithms. NLNP regression 1s
employed for prognostics, anomaly discovery/detection, and
predictive maintenance in a time-series datatflow process
primarily because a NLNP machine learning technique
makes no assumptions about the linear or nonlinear rela-
tionships between/among the time series “signals,” but
instead learns those relationships empirically.

Of these 3 NLNP machine learning approaches, NNs and
SVMs both employ stochastic (or apparently random) pro-
cesses for optimization of the weights. For NNs, the sto-
chastic optimization of weights occurs between perceptron
layers. For SVMs, the stochastic optimization occurs 1in
convex quadratic programming optimization of the regular-
1zation parameter to keep a balance between bias and
variance in the SVM estimates. For example, in both cases
(NNs and SVMs), 1f the pattern recognition 1s trained with
data from Monday, versus 1f 1t 1s trained with data from
Tuesday, the relationship between the output estimates and
the mput raw signals will be extremely similar. However, 1
one “looks into” the black box at the intermediate weights
for the Monday computation compared with the intermedi-
ate weights for the Tuesday computation, the intermediate
weights will be vastly different. For empirical pragmatic
applications of pattern recognition only, as long as the
outputs of the black box are accurate estimates of the
underlying time series, it does not matter that that the
weilghts 1nside the black box can be substantially different
every time the black box 1s run. But, for the application of
auditability, the randomness introduced by NNs and SVMs
renders them unsuitable for extracting a tamper-proof data
set because they are not deterministic, and therefore not
reversible.

Applying MSET for anomaly detection (and associated
prognostics and predictive maintenance) yields estimates
that may be stored alongside the original raw time series
telemetry values. In contrast to NNs and SVMs, MSET 1s a
deterministic (but complex) mathematical algorithm, the
MSET estimates are reversible as described above, which 1s
key for tamper-proofing in auditability assurance. In one
embodiment therefore, MSET 1s applied for anomaly detec-
tion in a time-series data process to enable tamper proofing
as part of auditability assurance. If any of the original raw
data streams generated by this anomaly detection process
were ever to be modified, altered, substituted or otherwise
changed, either by a user with malicious intentions or
accidentally through any data-corruption error in the storage
media, the change to the original raw data values can be
detected based on the accompanying MSET estimates. Or
where the original raw data streams are not tampered with or
are uncorrupted, the original raw data values can be vali-
dated or confirmed to be unchanged based on the accom-
panying estimates. This tamper-free certification may be
performed at any time following the creation of the MSET
estimates. This tamper-free certification 1s based on incor-
poration of the deterministic, reversible MSET algorithm
into an anomaly detection process as described herein.

Accordingly, a compact data set for estimating the origi-
nal values of a time-series data may be captured at any point
in time and stored along side other information about
changes made over the life of the time-series database, and
employed 1n an auditability process.

In one embodiment, snapshot 1solation forms a part of the
auditability process. A temporal database oflers the ability to
store and retrieve any version of a record. The versions are




US 11,948,051 B2

7

identified by a strictly ascending transaction time—the time
a version was available or visible for queries and follow-on
processing. Each specific version may be referred to as a
snapshot. In one embodiment, a tamper-proof data set cre-
ated at a specific time may be used to validate the data values
of the snapshots available at that creation time.

In one embodiment, that specific creation time for the
tamper-proof data set may be the creation of a journal entry.
Journaling processes are configured to track all changes to
the database. Each change in the database results in creation
ol a journal entry 1n a journal associated with the database.
Journals are typically highly resistant to data loss. For
example, 1n a journaled database, no data changes on
permanent media for the database, and no external notifi-
cations regarding the database are permitted until the journal
data describing the change are stored. This enables auditing
of the database even i1n the presence of failures. Journals
allow the system to reconstruct any snapshot of a database
even without temporal support, at the cost of a tremendous
performance burden 1n snapshot queries. Every database has
a copy of the most current snapshot, and temporal databases
provide many snapshots back 1in time. For immutable data
such as sensor readings, snapshots and journals can be stored
as a single copy.

But, 1n one embodiment, auditing may use additional
knowledge about the activities of users, for example,
answering questions about “who saw what information and
when (1n response to a query)?” Or, “who 1nserted, updated,
or deleted what information and when?”” And, “what actions
were done 1in the same transactions (how are the actions
related)?”” Such information may be recorded 1n an activity
journal entry. The entries of the activity journal are synchro-
nized with the standard journal entries. The activity journals
thus provide additional context information describing the
circumstances that lead to a database change and the atten-
dant creation of a journal entry.

In one embodiment, information describing the data prov-
enance may also be included 1n or synchronized with the
standard journal entries, providing still further context infor-
mation describing the circumstances that lead to a database
change and the attendant creation of a journal entry. Data
provenance information associates derived data with corre-
sponding inputs, processing steps, and physical-processing
environment. For example, provenance information identi-
fies the data that form the basis of a query result. In one
embodiment, provenance processes may be configured to
re-write queries 1 order to determine these data. In the
context of an audit, provenance metadata substantially
reduces the data that have to be considered, as it retains a
record of all data that formed the basis of a query result. In
one embodiment, the provenance information may include
further information such as descriptions of sensors that
provide the data, operability states of the sensor, assets
assoclated with the sensors, version of the asset, relation-
ships between assets.

In one embodiment, the tamper-proof data sets are created
in response to the change to the database, contemporane-
ously with the creation of the journal entry. In one embodi-
ment, the tamper-proof data set 1s captured in the journal just
like other metadata (change metadata including activity
journaling as well as data provenance metadata) associated
with the change. In one embodiment, the tamper-proof data
set 1s captured for every change to the database, assuring that
any subsequent alteration of data will be detected 1n an audit
process conducted in accordance with the systems and
methods described herein, (and incidentally also assuring
that the machine learning software configuration 1n opera-
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tion at the time of the change are captured and auditable
along with the rest of the journal information). The systems
and methods disclosed herein therefore enable an audit to be
performed on original data 1n any snapshot of the data,
regardless of later temporal evolution of the data in the
time-series database. Auditability of the results of machine
learning 1n a time-series database 1s thus ensured by
enabling capture of all necessary information at each change
to the database—journal entries, activity journal entries, data
provenance, and tamper-prool machine learning records—
thus tracking the entire historical provenance of a database
of signals.

—FExample Environment—

FIG. 1 illustrates one embodiment of a system 100
associated with ensuring that the results of machine learning
models can be audited.

In one embodiment, the system 100 includes a time series
data service 105 and an enterprise network 110 connected by
a network 115 such as the Internet. The time series data
service 105 1s connected either directly to sensors (such as
sensors 120) or remote terminal units (RTUs) through a
network 1235 or indirectly to sensors (such as sensors 130) or
RTUs through one or one or more upstream devices 1335. In
one embodiment, networks 115 and 125 are the same
network, and 1n another embodiment, networks 115 and 125
are separate networks.

In one embodiment, time series data service 105 includes
various systems which may include a machine learning audit
assurance system 140, a sensor interface server 145, a
prognostics, anomaly discovery, and predictive maintenance
system 150, a web 1nterface server 155, and data store 160.
Each of these systems 140-160 1s interconnected by server
side network 165. Fach of these systems 140-160 are
configured with logic, for example by various software
modules, for executing the functions they are described as
performing. In one embodiment, the systems 140-160 are
implemented by dedicated computing devices. In one
embodiment, one or more of the systems 140-160 may be
implemented by a common (or shared) computing device,
even though represented as discrete units in FIG. 1.

In one embodiment, time series data service 105 may be
hosted by a third party, and/or operated by a third party for
the benefit of multiple account owners/tenants, each of
whom 1s operating a business, and each of whom has an
associated enterprise network 110. In one embodiment, time
series data service 105 1s associated with a utility entity such
as a power utility, or associated with a major utility asset
such as a generation facility, substation, or other major
power grid component. In one embodiment, time series data
service 105 1s configured with logic, such as software
modules, to operate the time series data service 105 to (1)
create and export time-series databases and/or (11) audit a
time series database 1n accordance with the systems and
methods described herein.

In one embodiment, the sensors 120, 130 can be athxed to
or otherwise configured to detect the performance of one or
more components of a device or system. The devices or
systems generally include any type of machinery or facility
with components that perform measurable activities. The
sensors 120, 130 may include (but are not limited to): a
voltage sensor, a current sensor, a temperature sensor, a
pressure sensor, a rotational speed sensor, a flow meter
sensor, a vibration sensor, a microphone, an electromagnetic
radiation sensor, a proximity sensor, a gyroscope, an incli-
nometer, an accelerometer, a global positioning system
(GPS) sensor, a torque sensor, a tlex sensor, a nuclear
radiation detector, or any of a wide variety of other sensors
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or transducers for generating electrical signals that describe
detected or sensed physical behavior.

In one embodiment, the sensors 120, 130 are connected
through network 125 to sensor interface server 145. In one
embodiment, sensor interface server 145 1s configured with
logic, such as software modules, to collect readings from
sensors 120, 130 and store them as observations 1n a time
series, for example 1n data store 160. The sensor interface
server 145 1s configured to interact with the sensors, for
example by exposing one or more application programming
interfaces (APIs) configured accept readings from sensors
using sensor data formats and communication protocols
applicable to the various sensors 120, 130. The sensor data
format will generally be dictated by the sensor device. The
communication protocol may be a custom protocol (such as
a legacy protocol predating IoT implementation) or any of a
variety of Io'T or machine to machine (M2M) protocols such
as Constrained Application Protocol (CoAP), Data Distri-
bution Service (DDS), Devices Profile for Web Services
(DPWS), Hypertext Transport Protocol/Representational
State Transter (HT'TP/REST), MQ Telemetry Transport
(MQTT), Universal Plug and Play (UPnP), Extensible Mes-
saging and Presence Protocol (XMPP), ZeroMQ), and other
communications protocols that can be carried by the trans-
mission control protocol—internet protocol or user data-
gram protocol (TCP/IP or UDP) ftransport protocols.
SCADA protocols such as OLE for Process Control Unified
Architecture (OPC UA), Modbus RTU, RP-570, Profibus,
Conitel, IEC 60870-5-101 or 104, IEC 61850, and DNP3
may also be employed when extended to operate over
TCP/IP or UDP. In one embodiment, the sensor interface
server 145 polls sensors 120, 130 to retrieve sensor readings.
In one embodiment, the sensor interface server passively
receives sensor readings actively transmitted by sensors 120,
130.

In one embodiment, enterprise network 110 may be
associated with a utility entity such as a power utility. In one
embodiment, enterprise network 110 may be associated with
a regulatory entity, such as a government. For simplicity and
clarity of explanation, the enterprise network 110 1s repre-
sented by an on-site local area network 170 to which one or
more personal computers 175, or servers 180 are operably
connected, along with one or more remote user computers
185 that are connected to the enterprise network 110 through
the network 113 or other suitable communications network
or combination of networks. The personal computers 175
and remote user computers 185 can be, for example, a
desktop computer, laptop computer, tablet computer, smart-
phone, or other device having the ability to connect to local
area network 170 or network 115 or having other synchro-
nization capabilities. The computers of the enterprise net-
work 110 interface with time series data service 105 across
the network 115 or another suitable communications net-
work or combination of networks.

In one embodiment, remote computing systems (such as
those of enterprise network 110) may access information or
applications provided by the time series data service 1035
through web interface server 155. For example, computers
175, 180, 185 of the enterprise network 110 may request a
time-series database from time series data series data service
105. Or, for example, computers 175, 180, 185 of the
enterprise network 110 may perform an audit of a time series
database 1n accordance with the systems and methods
described herein. In one embodiment, the remote computing
system may send requests to and receive responses from
web 1nterface server 155. In one example, access to the
information or applications may be etfected through use of
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a web browser on a personal computer 175 or remote user
computers 185. In one example, these communications may
be exchanged between web interface server 155 and server
180, and may take the form of remote representational state
transfer (REST) requests using JavaScript object notation
(JSON) as the data interchange format for example, or
simple object access protocol (SOAP) requests to and from
XML servers.

In one embodiment, data store 160 includes one or more
time-series databases configured to store and serve time
series data recerved by sensor interface server 145 from
sensors 120, 130. In one embodiment, the time-series data-
base 1s an Oracle® database configured to store and serve
time-series data. In some example configurations, data
store(s) 160 may be implemented using a network-attached
storage (NAS) device and/or other dedicated server device.

In one embodiment, upstream device 135 may be a
third-party service for managing IoT connected devices. Or,
in one embodiment, upstream device 135 may be a gateway
device configured to enable sensors 130 to communicate
with sensor interface server 145 (for example, where sensors
130 are not IoT-enabled, and therefore unable to communi-
cate directly with sensor interface server 145).

—Example Method for ML Model Audit Assurance—

In one embodiment, each step of computer-implemented
methods described herein may be performed by a processor
(such as processor 1110 as shown and described with
reference to FIG. 11) of one or more computing devices (1)
accessing memory (such as memory 1115 and/or other
computing device components shown and described with
reference to FIG. 11) and (11) configured with logic to cause
the system to execute the step of the method (such as
machine learning audit assurance logic 1130 shown and
described with reference to FIG. 11). For example, the
processor accesses and reads from or writes to the memory
to perform the steps of the computer-implemented methods
described herein. These steps may include (1) retrieving any
necessary information, (1) calculating, determining, gener-
ating, classifying, or otherwise creating any data, and (i11)
storing any data calculated, determined, generated, classi-
fied, or otherwise created. References to storage or storing
indicate storage as a data structure in memory or storage/
disks of a computing device (such as memory 1115, or
storage/disks 1135 of computing device 1105 or remote
computers 1165 shown and described with reference to FIG.
11).

In one embodiment, each subsequent step of a method
commences 1n response to parsing a signal received or
stored data retrieved indicating that the previous step has
been performed at least to the extent necessary for the
subsequent step to commence. Generally, the signal received
or the stored data retrieved indicates completion of the
previous step.

FIG. 2 illustrates one embodiment of a method 200
associated with ensuring that the results of machine learning
models can be audited. In one embodiment, the steps of
method 200 are performed by machine learning audit assur-
ance system 140 or any of computers 175, 180, 185 1n
enterprise network 110 (as shown and described with refer-
ence to FIG. 1). In one embodiment, machine learning audit
assurance system 140 or any of computers 175, 180, 185 are
special purpose computing devices (such as computing
device 1105) configured with machine learning audit assur-
ance logic 1130.

The method 200 may be mitiated based on wvarious
triggers, such as receiving a signal over a network or parsing
stored data indicating that (1) a user (or administrator) of
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time series data service 105 or of computers 175, 180, 185
has 1nitiated method 200, (1) method 200 1s scheduled to be
initiated at defined times or time intervals, (111) a user
(associated with a utility or a regulatory entity) of time series
data service 105 or of computers 175, 180, 185 has requested
an audit of a time series database, or (1v) some other trigger
indicating that method 200 should begin. The method 200
initiates at START block 205 1n response to parsing a signal
received or stored data retrieved and determining that the
signal or stored data indicates that the method 200 should
begin. Processing continues to process block 210.

At process block 210, the processor retrieves a set of state
estimates for original time series data values from a database
under audit. The state estimates were generated by a state
estimation computation for each of the time series data
values. Processing at process block 210 completes, and
processing continues to process block 2185.

At process block 215, the processor reverses the state
estimation computation for each of the state estimates to
produce reconstituted time series data values for each of the
state estimates. Processing at process block 215 completes,
and processing continues to process block 220.

At process block 220, the processor retrieves the original
time series data values from the database under audit.
Processing at process block 220 completes, and processing
continues to process block 225.

At process block 225, the processor comparing the origi-
nal time series data values pairwise with the reconstituted
time series data values to determine whether the original
time series and reconstituted time series match. Processing
at process block 225 completes, and processing continues to
decision block 230.

At decision block 230, the processor evaluates whether
the original time series matches the reconstituted time series.
If the original time series matches the reconstituted time
series (YES), processing at decision block 230 completes
and processing continues to process block 235. It the origi-
nal time series does not match the reconstituted time series
(NO), processing at decision block 230 completes and
processing continues to process block 240.

At process block 235, the processor generates a signal that
the database under audit has not been modified because the
original time series and reconstituted time series match.
Processing at process block 235 completes, and processing
continues to END block 245, where process 200 ends.

At process block 240, the processor generating a signal
that the database under audit has been modified because the
original time series and reconstituted time series do not
match. Processing at process block 240 completes, and
processing continues to END block 245, where process 200
ends.

Each of the foregoing process blocks of method 200 1s
described 1n further detail elsewhere herein.

—Preparing to Reconstitute Original Time Series Data
From MSET Estimates—

FIG. 3 1llustrates a flowchart of one embodiment of an
auditability process 300 associated with ensuring that the
results of machine learning models can be audited. MSET 1s
incorporated 1n a data flow process, and the MSET opera-
tions are reversed to reconstitute the original time-series data
for auditability. This figure demonstrates the auditability of
this application of MSET.

In one embodiment, at a high level, the auditability
process 300 starts when the system retrieves MSET esti-
mates from a time-series database. Next, the system reverses
the MSET computation to produce reconstituted time-series

data from the MSFET estimates. As discussed above, MSET

10

15

20

25

30

35

40

45

50

55

60

65

12

1s a reversible process, which means that performing the
reverse MSET computation on the MSET estimates will
reconstitute the original time-series data. The system then 1s
given the original time-series data from the database being
audited. Finally, the system compares the reconstituted
time-series data with the original time-series data to certify
that there has been no deliberate tampering (or accidental
data corruption) 1n original time-series data if the compari-
son 1ndicates a match.

As discussed 1n more detail above, actions described with
reference to the auditability process 300 may be performed
by a processor of one or more computing devices accessing
memory, storage and/or other computing device components
shown and described with reference to FIGS. 1 and 11.

In one embodiment, an archived time series database 305
1s presented for audit to determine if the original time series
data 1n the database 1s intact or 1f the original time series data
in the database 1s corrupted or tampered with. The archived
time series database 305 may include one or more time
series signals, which 1s a sequence of time series values for
all observations of a time series. The archived time series
database 305 will be presented for pairwise diflerence
analysis 310 between original time series data values from
the archived time series database 305 and reconstituted time
series values derived from MSET modeling of the archived
database and MSET estimation of the values.

In one embodiment, archived time series database 305 1s
a snapshot of a database at a time when a change was made
to the database. Additionally, at the time the change 1s made
to the database, a journal entry describing the change i1s
made, and a set of state estimates 1s created for later pairwise
difference analysis 310 1n the context of an audit of the
archived time series database 305. In one embodiment, the
set of state estimates 1s stored 1n association with the journal
entry for the database under audit, archived time series
database 305. For example, the set of state estimates may
have been generated 1n response to one or more commands
indicating a change to the database under audit, and stored
in a data structure associated with a journal entry describing
the change. Other metadata may also be stored 1n association
with the journal entry, including provenance metadata that
identify the data on which query results (that lead to the
journaled change) are based.

Sensor disturbances including de-calibration bias, inter-
mittent stuck-at faults, change-of-gain drifts, and episodic
spikiness degrade signal quality and are a primary cause of
false-alarms (Type-I errors) and missed-alarms (Type-II
errors) 1n ML prognostics for IoT applications. The original
time series data values in the archived time series database
305 may 1nclude some of these sensor disturbances. In one
embodiment, the archived time series database 305 1s sub-
jected to a series of intelligent data preprocessing 315 steps
to cleanse the data and prepare 1t for MSET modeling and
estimation. The preprocessing serves to mitigate the unde-
sirable eflects of the sensor disturbances. In one embodi-
ment, the intelligent data preprocessing 315 1s iterated for
one or more time series included 1n the archived time series
database 305.

In one embodiment in the intelligent data preprocessing
315, all observations from all signals in archived time series
database 305 are first preprocessed and then optimally
re-sampled and “harmonized,” for example by using the
Oracle® analytical resampling process (ARP), to produce an
updated database of cleansed and optimally re-sampled/
synchronized signals. In one embodiment, the ARP may
involve one or more of the techniques described 1n “Auto-
mated Analytic Resampling Process for Optimally Synchro-
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nizing Time-Series Signals™, inventors K. C. Gross and G.
C. Wang, U.S. patent application Ser. No. 16/168,193, filed
Oct. 23, 2018, which 1s hereby incorporated by reference
herein 1n 1ts entirety.

In one embodiment, the archived time series database 305
undergoes a missing value imputation process 320 during
the intelligent data preprocessing 315. For each time series
signal 1n the archived time series data base 305, the missing
value imputation process 320 parses the original time series
signal with a missing value check. In response to parsing a
missing value 1n the time series, the missing value imputa-
tion process 320 fills in the missing value with an estimated
value. In one embodiment, the estimated value 1s a simple
interpolation. In one embodiment, the estimate 1s a highly
accurate estimate based on MSET-dernived serial correlation
and cross-correlations with the existing values, rather than a
simple interpolation. The updated, filled-in time series 1s
stored for future processing. The missing value imputation
process 320 may also store a record of the locations of
missing values in the time series that have been filled with
an estimate for later reversal. In one embodiment, the ARP
may 1nvolve one or more of the techmiques described in
“Missing Value Imputation to Facilitate Prognostic Analysis
of Time-Series Sensor Data”, inventors G. C. Wang, K. C.
Gross, and D. Gawlick, U.S. patent application Ser. No.
16/005,495, filed Jun. 11, 2018, which 1s hereby incorpo-
rated by reference herein in 1ts entirety.

In one embodiment, the intelligent data preprocessing 315
includes a despiking process 325. In one example, the
despiking process 325 may occur after missing values in the
original time series are replaced by the missing value
imputation process 320. In the despiking process 325, the
updated timeseries signals are parsed through an outlier
check to detect and remove data “spikes,” abrupt, short-lived
variations that do not represent accurate sensor readings.
The outhier check detects the spikes 1n the signals by
iteratively characterizing (generating descriptive parameters
to describe the characteristics and behavior of) a varniety of
statistical distributions for the signals. Time series data
values that are outliers based on these characterizations are
flagged as data value spikes. The captured spikes are
replaced temporarily with the signal average. The updated,
despiked time series 1s stored for later processing. The
despiking process 325 may also store a record of the value
and location within the time series of the detected spikes. In
one embodiment, the despiking process 325 may involve
one or more of the techniques described in “Synthesizing
High-Fidelity Signals with Spikes for Prognostic Surveil-
lance Applications”, inventors G. C. Wang and K. C. Gross,
U.S. patent application Ser. No. 16/215,345, filed Dec. 10,
2018, which 1s hereby incorporated by reference herein 1n 1ts
entirety.

In one embodiment, the intelligent data preprocessing 315
includes an un-quantizing process 330. For example, the
un-quantizing process 330 may occur after data spikes are
detected and removed from the time series by the despiking
process 325. In the un-quantizing process 330, the updated
signals are parsed through a “quantization” check to deter-
mine whether data quantization—a lossy data compression
technique 1n which intervals of data are grouped or binned
into single representative values—has caused signal values
to switch rapidly and repeatedly between adjacent represen-
tative values. In other words, the quantization check iden-
tifies sections of the time series where the observation points
bounce back and forth between a certain numbers of obser-
vation caps. Data quantization can be caused by caused by
low-resolution “quantized” transducers or sensors. The un-
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quantizing process 330 then converts quantized values
detected 1n the time series to high-accuracy continuous
signals. These continuous signals are very close approxima-
tions to what the signal values would have been 11 they had
been detected using higher resolution transducers. The
updated, un-quantized time series 1s stored for later process-
ing. The un-quantizing process 330 may also store a record
of the values and location within the time series of the
detected quantized values. In one embodiment, the un-
quantizing process 330 may involve one or more of the
techniques described in “Dequantizing Low-Resolution IOT
Signals to Produce High-Accuracy Prognostic Indicators”,
inventors M. L1 and K. C. Gross, U.S. Pat. No. 10,496,084,
granted Dec. 3, 2019, which 1s hereby incorporated by
reference herein 1n its entirety.

In one embodiment, the intelligent data preprocessing 315
includes an un-stairstepping process 335. For example, the
un-stairstepping process 335 may occur after quantized
values are detected and replaced in the time series by the
un-quantizing process 330. Stairstepping results from a
mismatch 1n sampling rates between recording systems and
detection systems where the slower sampling rate signals
simply repeat their last measured values at a higher sampling
rate, so that all measured signals result 1n a uniform sam-
pling rate. The time series values for slower sampling rate
sensors have sequences of flat segments, resembling stair
steps. Stairstepping 1s a common problem with commercial
data historical archives that use a simple algorithm {for
collecting low sampling rate data into higher sampling rate
time series. In one embodiment, the un-stairstepping process
335 parses the time series to 1dentify any stairstepped values
present. The un-stairstepping process 335 “fills 1n” the
stairstepped portions of the signals with the higher-sampling
rate signals. The higher sampling rate signal values may be
derived, 1n one embodiment, using MSET estimates. The
updated, filled-in time series 1s stored for future processing.
The un-stairstepping process 335 may also store a record of
the values and location within the time series of the detected
stairstepped values for later reversal. In one embodiment,
the un-stairstepping process 335 may involve one or more of
the techniques described in “Replacing Stair-Stepped Values
in Time-Series Sensor Signals With Inferential Values to
Facilitate Prognostic Surveillance Operations”, inventors K.
C. Gross and G. C. Wang, U.S. patent application Ser. No.
16/128,071, filed Sep. 11, 2018, which 1s hereby incorpo-
rated by reference herein in 1ts entirety.

In one embodiment, the intelligent data preprocessing 315
includes a uniform sampling process 340. In one embodi-
ment, uniform sampling process 340 may occur after
stairstepped values are detected and replaced in the time
series by the un-stairstepping process 335. In the uniform
sampling process 340, the signals are parsed with a sampling,
rate check to identily whether the sampling rates of signals
differ. If the signals exhibit different sampling rates (such as
having a different number of observations over the same
period of time), then the observations of the slower signals
will be resampled to match the highest sampling rate of the
signals. The updated, resampled time series 1s stored for
future processing. The uniform sampling process 340 may
also store a record of the original, un-resampled values and
their placement within the time series for later reversal.

In one embodiment, the intelligent data preprocessing 315
includes a phase synchronization process 345. For example,
phase synchronization process 345 may occur after the
uniform sampling process 340. Or, 1n one embodiment,
phase synchronization process 345 may occur in parallel
with the uniform sampling process 340. In the phase syn-
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chronmization process 345, the updated signals are parsed
through a correlation check to detect out-of-phase observa-
tions. Out-of-phase observations (or time-signal values that
are associated with an incorrect time 1ndex 1n the time series)
may be due to, for example, clock synchronization dispari-
ties 1n measurement instrumentation such as sensors. The
phase synchronization process 345 shifts the out-of-phase
values 1n the time domain to align them with the correct time
index. The updated, phase-synchronized time series 1s stored
for future processing. The phase synchronization process
345 may also store a record of the original placement of the
out-of-phase values within the time series for later reversal.

In one embodiment, one or more of the uniform sampling
process 340 and phase synchronization process 1s performed
using the Oracle® analytical resampling process (ARP), and
may involve one or more of the techniques described in
“Automated Analytic Resampling Process for Optimally
Synchronizing Time-Series Signals,” incorporated by refer-
ence above. Note that signal sampling may vary between
time series signals in the archived time series database 303.
For example, one time series may have a high, but regular
sampling rate or interval between observations. Another
time series may have a low, but regular sampling rate or
interval between observations. Another time series may have
an 1rregular or uneven interval between observations. In one
embodiment, the phase of time series signals may be
adjusted so that a set of time series signals 1n the archived
time series database 305 are aligned with respect to obser-
vation time. In one embodiment, the data values of a time
series signal may be re-sampled at new sampling interval by
interpolating estimated data values for observations at the
new sampling interval within the time series signal. This
may be performed for multiple synchronized time series
signals to result 1n a common sampling interval for the time
series signals.

The six intelligent data preprocessing 315 procedures
described above result 1n a high-quality, *“cleansed” or
“enhanced” version of archived time series database 305 that
may be stored and then retrieved and used to for subsequent
machine learning processes. Note that other data prepro-
cessing techniques may also be applied, or fewer than all six
of these techniques may be performed 1n the intelligent data
preprocessing 315. All observations from all signals are now
preprocessed and optimally re-sampled and “harmonized”
using ARP.

The intelligent data preprocessing 315 procedures correct
common 1ssues 1n a typical machine learning dataset. But,
cach of the steps modifies some of the original data. A record
should be kept for each modification so that the original data
can be reconstructed. As mentioned in discussion of each of
the six intelligent data preprocessing 315 procedures above,
cach procedure will store a record indicating the changes to
the data set. In one embodiment, the change records for all
the intelligent data preprocessing 315 procedures applied to
the archived time series database 305 will be stored 1n a
single electronic data structure called an intelligent data
preprocessing (IDP) model.

Referring now to FIG. 4, FIG. 4 illustrates a schematic
400 of one embodiment of storing change records from
intelligent data preprocessing 315 1n an example IDP model
405. IDP model 405 1s a complete, ordered record of every
action performed on the archived time series database 1n
preparation for machine learning operations.

Missing value imputation process 320 stores the record
(also referred to as a mark or marker) of the locations of
missing values 1n the time series that have been filled with
an estimate 1 a missing value marks data structure 410 1n
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IDP model 405. In one embodiment, the missing value
marks data structure includes a set of arrays associated with
time series 1n the archived time series database 305. There
1s a missing value marks array associated with each time
series with missing values 1n the archived time series
database 305. The missing value marks array may be an
array ol observation index (such as time) values, where each
index or time value indicates an observation 1n the associ-
ated time series where a missing value was filled 1n with an
estimated value.

Despiking process 325 stores the record of the value and
location within the time series of the detected spikes 1n a
spikes data structure 415 1n IDP model 405. In one embodi-
ment, the spikes data structure includes a set of arrays
associated with time series in the archived time series
database 305. There 1s a spikes array associated with each
time series 1n which spikes were detected. The arrays may be
arrays of tuples including an observation index value (such
as time) and an associated amplitude value of the spike (that
1s, the erroneous sensor reading value) at that observation.

Un-quantizing process 330 stores the record of the values
and location within the time series of the detected quantized
values 1n a smoothing model data structure 420 1 IDP
model 405. In one embodiment, the smoothing model 420
includes a set of quantized observations arrays associated
with time series in the archived time series database 30S.
There 1s a quantized observations array associated with each
time series 1n which quantized values were detected. The
arrays may be arrays of tuples including an observation
index value (such as time) and an associated quantized value
at that observation.

Un-stairstepping process 335 stores the record of the
values and location within the time series of the detected
stairstepped values 1n the smoothing model data structure
420. In one embodiment, the smoothing model 420 1includes
a set of stairstepped observations arrays associated with time
series 1n the archived time series database 305. There 1s a
stairstepped observations array associated with each time
series 1n which stairstepped values were detected. The arrays
may be arrays of tuples including an observation index value
(such as time) and an associated stairstepped (original or not
yet un-stairstepped) value at that observation. In one
embodiment, the quantized observations array and
stairstepped observations array are a single array containing
all the original quantized and stairstepped values indexed by
their locations within the time series. In this situation, the
un-stairstepping process may stairstepped value tuples into
quantized observations arrays created by the un-quantizing
process 330.

Uniform sampling process 340 stores the record of the
original, un-resampled values and their placement within the
time series 1n a timestamp sequence data structure 425 in
IDP model 405. Also, phase synchronization process 345
stores the record of the original placement of the out-of-
phase values within the time series in the timestamp
sequence data structure 423. In one embodiment, the time-
stamp sequence data structure 420 includes a set of time-
stamp arrays associated with time series in the archived time
series database 305. There 1s a timestamp array observations
array associated with each time series in which out-of-phase
observations were detected. The arrays include an observa-
tion 1ndex value (such as time) for each observation of the
time series. In one embodiment, there 1s a timestamp array
created for both uniform sampling process 340 and phase
synchronization process 345. This may be the case where the
processes are performed sequentially. Where the uniform
sampling process 340 and phase synchronization process
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345 are performed together, the results may be stored
together 1n single timestamp arrays.

Thus, 1n one embodiment, a processor preprocesses the

original time series values to mitigate effects of sensor
disturbances on quality of the original time series values, as
shown 1n 1ntelligent data preprocessing 315. Over the course
of that intelligent data preprocessing, the processor gener-
ates a data preprocessing model that records one or more
changes to the original time series values during the pre-
processing, as shown for example by IDP model 405. In one
embodiment, the reversal of the state estimation computa-
tion described with reference to process block 215, FIG. 2
also 1ncludes retrieving the data preprocessing model, such
as IDP model 405, from storage or memory; and reversing
the preprocess described by the data preprocessing model
for each of the state estimates.
Each of the six intelligent data preprocessing 315 proce-
dures described above may be reversed or otherwise undone
by retrieving the original time series values retained 1n IDP
model 405 and replacing the corresponding enhanced values
in the enhanced time series database with the original values.
In one embodiment, the reversal processes for the various
processes of the intelligent data preprocessing 135 are
performed 1n a reverse order from the order in which the
intelligent data preprocessing 135 processes were per-
formed.

—Model Training—

Referring again to FIG. 3, following the intelligent data
preprocessing 3135, the enhanced time series signals are used
to train an MSET model 350. FIG. 5 1llustrates a schematic
of one embodiment of an MSET model training process 500
associated with ensuring that the results of machine learning
models can be audited. Archived time series database 305 1s
provided to a select training data process 505. In the select
training data process 505, data 1s selected from the time
series data to form a training data set. In one embodiment,
a subset of the observation vectors of the time series 1s
selected to form the training set. The selected training data
set 1s then stored 1n a training data structure 510.

Once the selection of the training data 505 1s complete and
stored 1n training data structure 510, the intelligent data
preprocessing 315 1s commenced, and the IDP model 405 1s
created and stored, as described above with reference to
FIGS. 3 and 4. In one embodiment, the selection of the
training data 505 precedes the intelligent data preprocessing
315, and the training data 1s selected from the unenhanced
data. In another embodiment, the selection of the training
data 505 follows the intelligent data preprocessing 315, and
the training data 1s selected from the enhanced data.

Once the selection of the traimning data 505 and the
intelligent data preprocessing 315 are complete, a training
vector selection process 515 and MSET model training
process 520 loop 1s commenced. At vector selection, a set of
training vectors 1s selected from the training data to provide
to the MSET model for training. For example, 50 or 100
vectors may be selected. In one embodiment, the prepro-
cessed training data 1s split into two parts to improve the
model. For example, even numbered observations may form
a first part of the training set, and odd numbered observa-
tions may form a second part of the training set. During
iterations of the selection process, the set of training vectors
1s selected from the odd numbered observations and then
from the even numbered observations 1n an even/odd “hop-
scotch” vector selection.

As mentioned above, training an MSET model such as
MSET model 350 1s a deterministic mathematical proce-
dure. The MSET training 520 uses time series signals that
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are representative of the time series recorded in the archived
time series database to learn the correlations between the
time series signals. The MSET model training process 520
uses the enhanced signals to identify all signals in the
archived time series database 305 that have any degree of
association with any other signals 1n the archived time series
database 305. In one embodiment, identification of associa-
tions between signals 1s performed both for the full universe
of signals 1n archived time series database 305 as a whole,
and also performed separately for clusters of signals. This
empirical clustering approach recognizes that the archived
time series database 305 of signals may have come from
separate systems 1n a utility entity’s facility, or separate
assets 1n a utility entity’s fleet of utility devices and systems.
The final output of the MSET training process 520 1s a
trained MSET model 350. In one embodiment, the training
process 1s an MSET2 training process, and the MSE'T model
1s an MSET2 model.

In one embodiment, the vector selection 515 and MSET
training process 520 may be repeated in a loop (of one or

more 1terations) until MSET model 350 stabilizes, as indi-
cated at decision block 525. If the MSET model 350 does not
change much with a change to the training data set, the
model 350 1s stable (YES), and the training 1s complete, and
the trained MSET model 350 1s stored as a data structure for
further use. If the MSET model 350 still changes signifi-
cantly when the training data set 1s changed, the model 350
1s not yet stable (NO), and an additional set of training
vectors are selected at 515, and the MSET model 350 further
trained with the additional set of training vectors at 520.

Referring again to FIG. 3, the trained MSET model 350
1s used to compute MSET state estimates 355 of each signal
in the archived time series database 305, based upon the
empirical correlation patterns learned during model training
520 between each signal and other signals 1n the archived
time series database 305. The MSET estimates are highly
accurate, although the degree of accuracy may difler based
on the extent of the training of the MSET model.

At process block 360, the MSET estimates, MSE'T param-
eters, and training vectors are saved to a report data struc-
ture. This report data structure may be associated 1n a
database or data structure with a journal entry describing a
change to the archived time series database 305. (For
example, a change that resulted 1n the archived state of the
archived time series database). In one embodiment, process
blocks 320 through 3355 are mitiated and performed in
response to the change to the archived time series database
in order to be included alongside the journal entry describing
the change, 1n order to ensure that data tampering in the
archived time series database 305 1s detectable. In one
embodiment, activity journal metadata describing one or
more queries preceding the change and provenance metadata
describing the data underlying the query results 1s stored
along with the journal entry and the report data structure.

Note that a report may be generated in response to any
change to the database under audit, creating a trail of
tamper-proof data sets associated with each change to the
database. Thus, both the historical provenance information
(including the change, the activity journal describing activ-
ity that preceded the change, and the provenance informa-
tion describing the basis of the information presented in
response to queries associated with the change) and a record
for reconstructing the original data are recorded at each
journal entry. Thus, the complete history of the database
under audit 1s recorded and can be reviewed for audit.
Further, the record 1s far more compact than maintaining an
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additional snapshot of the database, resulting 1n a significant
performance improvement and improved portability of the
data used for audit.

In one embodiment, the MSET estimates 355 are stored
along with the original raw signals (the MSET parameters)
in archived time series database 303. Also stored 1in archived
time series database 305 are “sensor operability flags”, with
“1” for tully validated, or “0” for signals for which anoma-
lies were discovered 1n the sensor that measured the original
raw signal. In one embodiment, these sensor operability
flags are determined based on the results of fault detection
estimation using a sequential probability ratio test (SPRT) to
analyze the residual between the MSET estimate and origi-
nal raw signal value, and label the value as either anomalous
or non-anomalous. Where a threshold number of anomalous
values occur 1n the time series data for a particular sensor,
the sensor may be flagged as partially or completely 1nop-
erable (*0”) 1n the time series. The inoperable flag may
indicate signals from failing or degrading sensors/transduc-
ers, stuck-at faults, or itermittent problems with sensors/
transducers or upstream data collection electronics or net-
works. Where a number of anomalous values occurring in
the time series data for a particular sensor do not exceed the
threshold number, the sensor may be flagged as validated as
operable (“1”) in the time series. In one embodiment, the
threshold may be as low as meeting or exceeding one
anomalous reading in the time series, or may be higher as
appropriate. In one embodiment, the threshold may be set by
machine learning analysis of the time series, such as MSET
analysis. In one embodiment, these flags may be set 1n a data
structure including the time series.

—Model Limiting—

In some examples, the trained MSET model 350 may not
be very compact. Thus, for portability, it may be desirable to
limit the size of the MSET model 350. Referring now to
FIG. 6, FIG. 6 illustrates a schematic of one embodiment of
an MSET model limiting process 600 associated with ensur-
ing that the results of machine learning models can be
audited.

In one embodiment, the system initially trains a multi-
variate state estimation model, such as MSET model 350,
with a set of training values selected from the original time
series values, for example as shown and described with
retference to FIG. 5. The complexity of the trained multi-
variate state estimation model may be reduced by principal
component analysis of a matrix for the trained multivariate
state estimation model, and limiting the trained multivanate
state estimation model to major components of the matrix.
For example, MSET model 350 may be reduced by principal
component analysis of the model 350°s MSET matrix, and
limiting the model 350 to major components of the matrix.
Note that the MSET model consists of more than just the
MSET matrix, but the MSET matrix 1s central to the MSET
algorithm. As above, the MSET model 350 may be an
MSFET?2 model.

In one embodiment, the system decomposes the matrix
associated with the multivarniate state estimation module into
a set of eigenvectors. For example, the complexity of the
MSET model 350 1s reduced by performing a singular value
decomposition (SVD) 605 of the MSET matrix included 1n
the MSET model 350. In one embodiment, the SVD 605
consists of a sequence of eigenvectors and their associated
eigenvalues. In one embodiment, the eigenvectors resulting
from the SVD 605 are sorted in decreasing order by their
respective associated eigenvalues. The system then stores

5

10

15

20

25

30

35

40

45

50

55

60

65

20

the sorted sequence of eigenvectors and their associated
eigenvalues 610, for example as an SVD data structure for
further processing.

In one embodiment, the system selects a subset of major
eigenvectors from the set of eigenvectors stored 1n the SVD
data structure. For example, the system selects the major
eigenvectors 615 from the SVD 605 based on the sorted
eigenvectors and eigenvalues 610. The eigenvectors with the
largest eigenvalues are the major eigenvectors. These major

eigenvectors account for the greatest variability 1n sensor
data over the time series, and are therefore the most infor-
mative for state estimation modeling. In one embodiment,
the processor selects the “top” N eigenvectors having the
largest associated eigenvalues to be the major eigenvectors
with their associated major eigenvalues 620. The processor
then deletes all eigenvectors and eigenvalues in the SVD
data structure except for the top N eigenvectors, removing
all eigenvectors (along with their associated eigenvalues)
that are not major eigenvectors.

In one embodiment, the system creates a “limited” mul-
tivariate state estimation model from the subset of major

eigenvectors. For example, the retained top N major eigen-
vectors and their associated major eigenvalues 620 are
provided to an MSET model limiter 625. The MSET model
350 1s also provided to the MSET model limiter 625. The
MSET module limiter 625 operates to limit the MSET model
350 to the top N major eigenvectors and their eigenvalues
620. This substantially reduces the amount of data required
for encoding the results of the MSET algorithm. In one
embodiment, the MSET model limiter 625 constructs a
limited MSET matrix from the major eigenvectors and
associated eigenvalues 620. The model limiter 625 replaces
the original MSET matrix in MSET model 350 with the
limited MSET matrix to create a limited MSET model 630.
The limited MSET model 630 1s stored as a data structure 1n
memory or storage.

Referring again to FIG. 2, in one embodiment, the rever-
sal of the state estimation computation also includes gener-
ating the reverse of a computation by which the limited
multivariate state estimation model (such as limited MSET
model 630) forms state estimates.

—Data Compression—

In some examples, the full archived time series data base
305 may be very large. Thus, for portability, 1t may be
desirable to limit the size of the database to the parameters
of the limited MSET model 630. FIG. 7 illustrates a sche-
matic of one embodiment of a data compression process 700
associated with ensuring that the results of machine learning
models can be audited. In data compression process 700,
archived time series database 305 1s reduced to a minimal
size suitable for audit of the uncompressed or original
archived time series database 303.

In one embodiment, at process block 705, the system
omits training data values from the original time series
values 1n the database under audit, archived time series
database 305. For example, in one embodiment, the system
creates a copy of the archived time series database 305 that
does not include training data used to train an MSET model.
In one embodiment, training data for an MSET model, such
as training data 510 for MSET model 350, 1s removed from
the copy of the archived time series database 305. For
example, all observation records used for training MSET
model 350 may be deleted from the copy of the archived
time series database 305. In another embodiment, the copy
of the archived time series database 303 1s initially created
without the training data, avoiding the need to delete 1t. The
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system stores the reduced copy of the archived time series
database for subsequent processing.

In one embodiment, at process block 707, the system
preprocesses the remaining original time series data values
to mitigate the eflects of sensor disturbances and generating
a model that records the changes to the remaining original
time series data. For example, the intelligent data prepro-
cessing 315 (as described above) may be performed for the
reduced copy of the archived time series database 305. The
system forms an IDP operation model 710 similar to IDP
model 405, where the IDP operation model 710 1s only for
the remaining observation records remaining in the reduced
copy of the archived time series database 305 after the
training observations were omitted. The system stores the
pre-processed, reduced copy of the archived time series data
base for subsequent processing.

In one embodiment, at MSET operation block 715, the
system performs state estimation (such as MSET state
estimation) for the preprocessed, remaining original time
series data values using the limited multivanate state esti-
mation model to create a compressed time series database.
The limited MSET model 630 and the copy of the archived
time series database 305 with the training data omitted are
used to perform the MSET operation 715. In one embodi-

ment, as described above, the MSET operation 715 and
limited MSET model 630 are an MSET?2 operation and an

MSET?2 model. The MSET operation 715 (1) forms a state
estimate for each observation based on the remaining param-
eters, and (11) removes from the copy of the archived time
series database those time series variables that are not
parameters of the limited MSET model 630. Thus, data
values that do not mform MSET state estimation (data
values that do not significantly aflect the value of the MSET
state estimation) are deleted from the copy of the archived
time series database, further reducing the size of the data.
The MSFET state estimates formed for each observation and
the remaiming parameter values for each observation form
compressed data 720. The compressed data 720 1s stored as
a data structure 1n memory or storage.

Thus, 1n one embodiment, once the archived time series
database 1s preprocessed, the MSET algorithm 1s performed
using the limited MSET model 630. The limited MSET
model 630 along with the MSET parameters for the limited

MSET model 630 constitutes a compressed version of

original time series database (compressed data 720). The
MSET estimates along with the MSET model are stored,
representing the original timeseries data 1n reduced size. In
the event there 1s a need to i1dentify 1f any of the original raw
data streams were modified, altered, or substituted, the
system will be able to reverse the stored MSET estimates
and the MSET model to reconstitute the original timeseries
data, which can then used to validate or invalidate purported
original time series data, as discussed below.

—Data Formats—

FIGS. 8A and 8B illustrate two example data report
formats. Each of these two formats contain suflicient infor-
mation to perform an audit of the database under audit, such
as original archived time series database 305. In one
embodiment, the system generates an electronic data report
data structure following one of the two example data report
formats.

In one embodiment, the system generates an electronic
data report data structure that includes a preprocessing
model that records one or more changes to the original time
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performing state estimation with a limited multivariate state
estimation model trained with a set of tramning values
selected from the original time series values and excluding
from the compressed time series database those values that
are not parameters of the limited multivariate state estima-
tion model; and one or more of (1) the set of training values
and (1) the limited multivaniate state estimation model.
Comparing the two formats, the first data report format
800 specifies (that 1s, includes 1n the data report) all the
training data 510 (and not the limited MSET2 model 630),
while the second data report format 850 specifies the limited
MSET?2 model 630 (and not the training data 510). Both the

first data report format 800 and the second data report format
850 formats specily the IDP operation model 710 and
compressed data 720.

Thus, 1n one embodiment, the electronic data report data
structure 1ncludes a preprocessing model (IDP operation
model 710) that records one or more changes to the original
time series values during preprocessing to mitigate etfects of
sensor disturbances on quality of the original time series
values (as shown and described with reference to FIGS. 3,
4 and 7). The electronic data report data structure also
includes a compressed time series database (compressed
data 720) generated by performing state estimation with a
limited multivariate state estimation model and excluding
from the compressed time series database those values that
are not parameters of the limited multivariate state estima-
tion model (ash shown and described with reference to FIG.
7). The electronic data report data structure also includes one
or more of (1) a set of training values selected from the
original time series values and used to train the limited
multivariate state estimation model, such as i1n first data
report format 800, and (1) the limited multivariate state
estimation model, such as 1n second data report format 850.

One example advantage of the first data report format 800
1s that the details of the MSET (or MSET2) auditability
algorithm are not revealed. One example advantage of the
second data report format (850) 1s the reduced amount of
data that must be provided in the report. Note that the
amount or volume of compressed data 720 will generally
dominate the size of the report in both the first data report
format 800 and the second data report format 850, so 1n
practice the two formats may not differ significantly 1n size.

Referring again to FIG. 3, in one embodiment, the system
reverses the MSET computation to reconstitute the raw data
as shown at process block 365. For example, a data report
following one of the data report formats 800, 850 1s created
and may be used to reconstruct data for audit of the archived
time series database 305. Note that the reports are stored, for
example, alongside journal entries, to await evaluation in the
context of an audit of archived time series database 305. In
some embodiment, the reports may be stored for a signifi-
cant period of time before being used to reconstitute raw
data. In some embodiments, the audit of archived time series
database 305 may not occur, and the data reports are never
retrieved and used to reconstitute raw data at process block
365. Also, the report may be distributed to third parties for
external audit of the third party’s copy of the archived time
series database.

—Data Reconstruction Using Example First Data Report
Format—

FIG. 9 1llustrates a schematic of one embodiment of a data
reconstruction process 900 using first data report format
800, the data reconstruction process 900 further being asso-
ciated with ensuring that the results of machine learning
models can be audited.
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In one embodiment, in data reconstruction process 900, a
limited MSET (or MSET2) model 630 1s first trained using

the IDP model 405 and training data 510 (for example as
shown and described with reference to FIG. 5), and then
limited (for example as shown and described with reference

to FIG. 6), as shown at process block 905. The IDP model

405 1s retrieved from storage and provided to the training
and limitation process 905. The training data 510 1s read
from the data report 800. Creation of the limited MSET
model 630 1s needed due to the absence of the limited MSET
model 630 from the first data report format 800.

In one embodiment, the system identifies a reverse state
estimation computation that undoes the steps performed by
the state estimation computation to form the state estimates

from the original time series data values. For example, the
MSET (or MSET2) algorithm 1s reversed and applied to the

compressed data 720, as shown at process block 910. To
reverse the MSET algorithm, the steps to form an MSET
estimate performed by the trained model 630 are parsed, and
a sequence of discrete operations are recorded. For each of
the discrete operations 1n the sequence, the inverse operation
which will undo the discrete operation 1s identified, and
recorded 1n a sequence of reverse operations. In one embodi-
ment, the sequence of reverse operations should be in
reverse order from the sequence of discrete operations. For
example, where a discrete operation 1s to be performed first
in the sequence of discrete operations, the inverse operation
of the discrete operation 1s to be performed last in the
sequence of reverse operations, the inverse operation of the
second discrete operation 1s to be performed second to last
in the sequence of reverse operations, and so forth, such that
the inverse operations of the discrete operations are to be
performed 1n the reverse order of the discrete operations.
The system stores the sequence of reverse operations for
subsequent processing.

In one embodiment, the system then generates a set of
reverse state estimates for the original time series data from
the set of state estimates. Each of the reverse state estimates
1s generated by performing the reverse state estimation for
one of the set of state estimates, for example as indicated by
the sequence of reverse operations. For example, the system
performs the reverse of the MSET computations used to
create the state estimates stored in the compressed data 720
on those state estimates. Reverse MSET estimates of the
original time series data values at each observation are
created from the state estimates of those values and the
observed values of the other parameters stored in the com-
pressed data 720. The sequence of reverse operations 1s
executed for the estimated data values at each observation to
create reverse MSET estimates for each of the estimated data
values.

In one embodiment, the intelligent data preprocessing 315
1s also reversed and applied to the reverse MSET estimates,
as shown at process block 915. In one embodiment, the IDP
operation model 710 1s read from the data report 800 and the
original time series values retained in IDP operation model
710 are substituted for any corresponding values in the
reverse MSET estimates, thereby reversing the intelligent
data preprocessing 315 for the compressed data and forming
reconstituted data, approximate original data 920. The
reconstituted data 920 1s stored for subsequent use in an
audit process, including for example the verification process
shown and described with reference to FIG. 3, blocks 310
and 370-380. Thus, the reconstituted time series data values
for each of the state estimates 1s based on the reverse state
estimates.
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Note that the resulting reconstituted time series data
approximates the original data 1in archived time series data-
base 305, and may difler slightly from the original data.
Nevertheless, the approximation may be used to verify that
the archived time series database 305 1s not tampered with
or corrupted. Thus, the approximation can be used to verity
that an archived time series database 305 that indicates
compliance with regulations, or violation of regulations,
truly indicates such compliance or violation.

—Data Reconstruction Using Example Second Data
Report Format—

FIG. 10 illustrates a schematic of one embodiment of a
data reconstruction process 1000 using second data report
format 850, the data reconstruction process 1000 further
being associated with ensuring that the results of machine
learning models can be audited. The reconstruction process
1000 follows generally the same process steps as process
900, except that the limited MSET model 630 does not need
to be first computed, because it 1s already stored 1n second
data report format 850. Note that, in one embodiment, the
order of performing intelligent data preprocessing 315 rever-
sal 1010 and MSET reversal 1015 may be switched 1n
process 1000 from the order of MSET reversal 910 preced-
ing intelligent data preprocessing 315 reversal 915 1n pro-
cess 900.

In one embodiment, the intelligent data preprocessing 315
1s first reversed and applied to the MSET estimates in the
compressed data 720, as shown at process block 1010. In
one embodiment, the IDP operation model 710 1s read from
the data report 800 and the original time series values
retained 1n IDP operation model 710 are substituted for any
corresponding values in MSET estimates 1n the compressed
data, thereby reversing the intelligent data preprocessing
315 for the compressed data 720. Thus, the reconstituted
time series data values for each of the state estimates 1s
based on reverse state estimates such as those described with
reference to process block 1015.

In one embodiment, the MSET (or MSET?2) algorithm 1s
reversed and applied to the compressed data 720, as shown
at process block 1015, 1n a similar manner as that described
with reference to process block 910 above. For example, the
system performs the reverse of the MSET computations
used to create the state estimates stored in the compressed
data 720 on those state estimates. Reverse MSET estimates
of the original time series data values at each observation are
created from the state estimates of those values and the
observed values of the other parameters stored in the com-
pressed data 720. The reverse MSET estimates and replaced
intelligent data preprocessing values from process block
1010 form reconstituted data, approximate original data
1020. The reconstituted data 1020 1s stored for subsequent
use 1n an audit process which may include, for example, the
validation process shown and described with reference to
FIG. 3, blocks 310 and 370-380. As in process 900 above,
the resulting time series data approximates the original data
in archived time series database 305, and may differ slightly
from the original data, but may be used to verity that the
archived time series database 305 1s not tampered with or
corrupted.

—Tampering Report—

If there has been no deliberate tampering (or accidental
data corruption) 1n the “original” timeseries data (the com-
parison 1ndicates a match in the statistics sense), the system
certifies that the original data 1s 1intact, otherwise the original
data 1s corrupted.

Referring again to FIG. 3, the system proceeds to perform
an audit of the state (intact or corrupted/tampered with) of an
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original time series 1n the archived time series database 305.
In one embodiment, in the context of this audit, the correct-
ness of a reported time series 1s verified using the reconsti-
tuted data: the original data 1s compared with reconstituted
(or reconstructed) data, for example reconstituted data 920
resulting from process 900 or reconstituted data 1020 result-
ing from process 1000. The two data streams, original time
series and reconstituted time series, are compared pairwise,
as shown at pairwise difference analyzer, process block 310.
The pairwise difference analyzer 310 compares the original
time series data values and the reconstituted time series data
values for each observation of the two time series to see if
the reconstituted value matches (or closely approximates
within a threshold) the original value.

In one embodiment, the pairwise diflerence analyzer
compares each the original time series data value and the
reconstituted time series data value for each observation to
determine 1f i1t varies by more than a preset threshold
amount, for example, a percentage amount. In another
embodiment, the pairwise difference analyzer compares
cach original time series data value and the reconstituted
time series data value for each observation to determine 1t 1t
triggers a fault detection using a trained fault detection
model included in the trained, limited MSET2 model 630.
The fault detection model may employ a sequential prob-
ability ratio test (SPRT) to analyze the residuals between the
original time series data value and the reconstituted time
series data value for each observation to determine whether
or not the purported original time series data 1s anomalous.

The results of the pairwise comparison are evaluated at
decision block 370. If the two data streams match (YES),
then the verification 1s passed, and processing proceeds to
process block 375. If the two data streams do not match
(NO), then the verification fails, and processing proceeds to
process block 380.

At process block 375, a ‘passed’ verification report 1indi-
cating that the original time series data 1s intact 1s generated.
In one embodiment, the passed verification report 1s a signal
that when parsed, indicates that the original time series data
1s intact. In one embodiment, the passed verification report
1s a human readable document indicating that the original
time series data 1s intact. In one embodiment, 1n response to
the passed verification report, the system generates and
either executes or transmits for execution an instruction to
display an indication that the original time series data is
intact on a graphical user interface (GUI). The GUI may be
associated with a utility entity or a regulatory entity. Pro-
cessing 1n process 300 then ends.

At process block 380, a ‘failed’ verification report indi-
cating that the original time series data i1s corrupted or
tampered with 1s generated. In one embodiment, the failed
verification report 1s a signal that when parsed, indicates that
the original time series data 1s corrupted or tampered with.
In one embodiment, the failed verification report 1s a human
readable document indicating that the original time series
data 1s corrupted or tampered with. In one embodiment, 1n
response to the failed verification report, the system gener-
ates and either executes or transmits for execution an
instruction to display an indication that the original time
series data 1s corrupted or tampered with on a GUI. The GUI
may be associated with a utility entity or a regulatory entity.
Processing in process 300 then ends.

Thus, 1n response to the signal that the database under
audit has not been modified, the system generates an elec-
tronic verification report message indicating that the data-
base under verification 1s certified to be uncorrupted and not
tampered with. In response to the signal that the database
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under audit has been modified, the system generates an
clectronic verification report message indicating that the
database under audit 1s either corrupted or tampered with.
The system may then transmit the generated electronic
verification report to a computing device to cause the
verification report message to be stored by the computing
device or displayed by the computing device. In one
embodiment, the computing device may be associated with
a utility entity or a regulatory entity.

—Software Module Embodiments—

In general, software instructions are designed to be
executed by a suitably programmed processor. These soft-
ware 1nstructions may include, for example, computer-
executable code and source code that may be compiled into
computer-executable code. These software instructions may
also 1include structions written 1n an 1nterpreted program-
ming language, such as a scripting language.

In a complex system, such instructions are typically
arranged 1nto program modules with each such module
performing a specific task, process, function, or operation.
The entire set of modules may be controlled or coordinated
in their operation by an operating system (OS) or other form
ol organizational platform.

In one embodiment, one or more of the components,
functions, methods, or processes described herein are con-
figured as modules stored 1n a non-transitory computer
readable medium. The modules are configured with stored
software 1nstructions that when executed by at least a
processor accessing memory or storage cause the computing
device to perform the corresponding function(s) as described
herein.

—Cloud System, Multi-Tenant, and Enterprise Embodi-
ments—

In one embodiment, the present system 1s a computing/
data processing system including an application or collec-
tion of distributed applications for enterprise organizations.
The applications and computing system may be configured
to operate with or be implemented as a cloud-based net-
working system, a software as a service (SaaS) architecture,
or other type of networked computing solution. In one
embodiment the present system 1s a centralized server-side
application that provides at least the functions disclosed
herein and that 1s accessed by many users via computing
devices/terminals communicating with the computing sys-
tem (functioning as the server) over a computer network.

—Computing Device Embodiment—

FIG. 11 illustrates an example computing device 1100 that
1s configured and/or programmed with one or more of the
example systems and methods described herein, and/or
equivalents. The example computing device may be a com-
puter 1105 that includes a processor 1110, a memory 11185,
and input/output ports 1120 operably connected by a bus
1125. In one example, the computer 1105 may include
machine learning audit assurance logic 1130 configured to
facilitate ensuring that the results of machine learning mod-
els can be audited, similar to logic and systems shown 1n
FIGS. 1 through 10. In different examples, the logic 1130
may be implemented in hardware, a non-transitory com-
puter-readable medium with stored instructions, firmware,
and/or combinations thereof. While the logic 1130 1s 1llus-
trated as a hardware component attached to the bus 1125, 1t
1s to be appreciated that in other embodiments, the logic
1130 could be implemented 1n the processor 1110, stored 1n
memory 1115, or stored 1n disk 1135. In one embodiment,
logic 1130 or the computer 1s a means (e.g., structure:
hardware, non-transitory computer-readable medium, firm-
ware) for performing the actions described. In some embodi-
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ments, the computing device may be a server operating in a
cloud computing system, a server configured 1n a Software

as a Service (SaaS) architecture, a smart phone, laptop,
tablet computing device, and so on.

The means may be implemented, for example, as an ASIC
programmed to ensure that the results of machine learning
models can be audited. The means may also be implemented
as stored computer executable instructions that are presented
to computer 1105 as data 1140 that are temporarily stored in
memory 1115 and then executed by processor 1110.

Logic 1130 may also provide means (e.g., hardware,
non-transitory computer-readable medium that stores
executable 1nstructions, firmware) for ensuring that the
results of machine learning models can be audited.

Generally describing an example configuration of the
computer 1105, the processor 1110 may be a variety of
various processors including dual microprocessor and other
multi-processor architectures. A memory 1115 may include
volatile memory and/or non-volatile memory. Non-volatile
memory may include, for example, ROM, PROM, and so
on. Volatile memory may include, for example, RAM,
SRAM, DRAM, and so on.

A storage disk 1135 may be operably connected to the
computer 1100 via, for example, an 1nput/output (I/O)
interface (for example, card, device) 1145 and an input/
output port 1120. The disk 1135 may be, for example, a
magnetic disk drive, a solid-state disk drive, a floppy disk
drive, a tape dnive, a Zip drive, a flash memory card, a
memory stick, and so on. Furthermore, the disk 1135 may be
a CD-ROM drive, a CD-R drive, a CD-RW drive, a DVD
ROM, and so on. The memory 1115 can store a process 1150
and/or a data 1140, for example. The disk 1135 and/or the
memory 1115 can store an operating system that controls
and allocates resources of the computer 1103.

The computer 1105 may interact with input/output (I/O)
devices via the I/O interfaces 1145 and the input/output ports
1120. Input/output devices may be, for example, a keyboard
1180, a microphone 1184, a pointing and selection device
1182, cameras 1186, video cards, displays 1170, scanners
1188, printers 1172, speakers 1174, the disk 1135, the
network devices 1155, and so on. The put/output ports
1120 may include, for example, serial ports, parallel ports,
and USB ports.

The computer 1105 can operate 1n a network environment
and thus may be connected to the network devices 1155 via
the I/O interfaces 1145, and/or the I/O ports 1120. Through
the network devices 1155, the computer 1105 may interact
with a network 1160. Through the network 1160, the com-
puter 1105 may be logically connected to remote computers
1165. Networks with which the computer 1105 may interact
include, but are not limited to, a LAN, a WAN, and other
networks.

Definitions and Other Embodiments

In another embodiment, the described methods and/or
their equivalents may be implemented with computer
executable instructions. Thus, 1n one embodiment, a non-
transitory computer readable/storage medium 1s configured
with stored computer executable instructions of an algo-
rithm/executable application that when executed by a
machine(s) cause the machine(s) (and/or associated compo-
nents) to perform the method. Example machines include
but are not limited to a processor, a computer, a server
operating 1n a cloud computing system, a server configured
in a Software as a Service (SaaS) architecture, a smart
phone, and so on). In one embodiment, a computing device
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1s implemented with one or more executable algorithms that
are configured to perform any of the disclosed methods.

In one or more embodiments, the disclosed methods or
their equivalents are performed by either: computer hard-
ware configured to perform the method; or computer mnstruc-
tions embodied in a module stored 1n a non-transitory
computer-readable medium where the 1nstructions are con-
figured as an executable algorithm configured to perform the
method when executed by at least a processor of a comput-
ing device.

While for purposes of simplicity of explanation, the
illustrated methodologies in the figures are shown and
described as a series of blocks of an algorithm, 1t 1s to be
appreciated that the methodologies are not limited by the
order of the blocks. Some blocks can occur in different
orders and/or concurrently with other blocks from that
shown and described. Moreover, less than all the 1llustrated
blocks may be used to implement an example methodology.
Blocks may be combined or separated into multiple actions/
components. Furthermore, additional and/or alternative
methodologies can employ additional actions that are not
illustrated i1n blocks. The methods described herein are
limited to statutory subject matter under 35 U.S.C § 101.

The following includes defimitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The
examples are not intended to be limiting. Both singular and
plural forms of terms may be within the definitions.

References to “one embodiment”, “an embodiment”, “one
example”, “an example”, and so on, indicate that the
embodiment(s) or example(s) so described may include a
particular feature, structure, characteristic, property, ele-
ment, or limitation, but that not every embodiment or
example necessarily includes that particular feature, struc-
ture, characteristic, property, element or limitation. Further-
more, repeated use of the phrase “in one embodiment™ does
not necessarily refer to the same embodiment, though 1t may.

ASIC: application specific integrated circuait.

CD: compact disk.

CD-R: CD recordable.

CD-RW: CD rewriteable.

DVD: digital versatile disk and/or digital video disk.

HTTP: hypertext transfer protocol.

LAN: local area network.

RAM: random access memory.
DRAM: dynamic RAM.

SRAM: synchronous RAM.

ROM: read only memory.

PROM: programmable ROM.

EPROM: erasable PROM.

EEPROM: electrically erasable PROM.

USB: universal serial bus.

XML: extensible markup language.

WAN: wide area network.

A “data structure”, as used herein, 1s an organization of
data 1n a computing system that 1s stored 1n a memory, a
storage device, or other computerized system. A data struc-
ture may be any one of, for example, a data field, a data file,
a data array, a data record, a database, a data table, a graph,
a tree, a linked list, and so on. A data structure may be
formed from and contain many other data structures (e.g., a
database includes many data records). Other examples of
data structures are possible as well, 1n accordance with other
embodiments.

“Computer-readable medium” or “computer storage
medium”, as used herein, refers to a non-transitory medium
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that stores 1instructions and/or data configured to perform
one or more of the disclosed functions when executed. Data
may function as instructions in some embodiments. A com-
puter-readable medium may take forms, including, but not
limited to, non-volatile media, and volatile media. Non-
volatile media may include, for example, optical disks,
magnetic disks, and so on. Volatile media may include, for
example, semiconductor memories, dynamic memory, and
so on. Common forms of a computer-readable medium may
include, but are not limited to, a floppy disk, a flexible disk,
a hard disk, a magnetic tape, other magnetic medium, an
application specific integrated circuit (ASIC), a program-
mable logic device, a compact disk (CD), other optical
medium, a random access memory (RAM), a read only
memory (ROM), a memory chip or card, a memory stick,
solid state storage device (SSD), tlash drive, and other media
from which a computer, a processor or other electronic
device can function with. Each type of media, i1 selected for
implementation 1n one embodiment, may include stored
instructions of an algorithm configured to perform one or
more of the disclosed and/or claimed functions. Computer-
readable media described herein are limited to statutory
subject matter under 35 U.S.C § 101.

“Logic”, as used herein, represents a component that 1s
implemented with computer or electrical hardware, a non-
transitory medium with stored instructions of an executable
application or program module, and/or combinations of
these to perform any of the functions or actions as disclosed
herein, and/or to cause a function or action from another
logic, method, and/or system to be performed as disclosed
herein. Equivalent logic may include firmware, a micropro-
cessor programmed with an algorithm, a discrete logic (e.g.,
ASIC), at least one circuit, an analog circuit, a digital circuit,
a programmed logic device, a memory device containing
instructions of an algorithm, and so on, any of which may be
configured to perform one or more of the disclosed func-
tions. In one embodiment, logic may include one or more
gates, combinations of gates, or other circuit components
configured to perform one or more of the disclosed func-
tions. Where multiple logics are described, 1t may be pos-
sible to incorporate the multiple logics into one logic.
Similarly, where a single logic 1s described, i1t may be
possible to distribute that single logic between multiple
logics. In one embodiment, one or more of these logics are
corresponding structure associated with performing the dis-
closed and/or claimed functions. Choice of which type of
logic to implement may be based on desired system condi-
tions or specifications. For example, 1 greater speed 1s a
consideration, then hardware would be selected to 1mple-
ment functions. If a lower cost 1s a consideration, then stored
instructions/executable application would be selected to
implement the functions. Logic 1s limited to statutory sub-
ject matter under 35 U.S.C. § 101.

An “operable connection”, or a connection by which
entities are “operably connected”, 1s one in which signals,
physical communications, and/or logical communications
may be sent and/or received. An operable connection may
include a physical interface, an electrical interface, and/or a
data interface. An operable connection may include differing
combinations of interfaces and/or connections suflicient to
allow operable control. For example, two entities can be
operably connected to communicate signals to each other
directly or through one or more intermediate entities (e.g.,
processor, operating system, logic, non-transitory computer-
readable medium). Logical and/or physical communication
channels can be used to create an operable connection.
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“User”, as used herein, includes but 1s not limited to one
or more persons, computers or other devices, or combina-
tions of these.

While the disclosed embodiments have been illustrated
and described 1n considerable detail, 1t 1s not the intention to
restrict or 1n any way limit the scope of the appended claims
to such detail. It 1s, of course, not possible to describe every
concelvable combination of components or methodologies
for purposes of describing the various aspects of the subject
matter. Therefore, the disclosure 1s not limited to the specific
details or the illustrative examples shown and described.
Thus, this disclosure 1s intended to embrace alterations,
modifications, and variations that fall within the scope of the
appended claims, which satisiy the statutory subject matter
requirements of 35 U.S.C. § 101.

To the extent that the term “includes” or “including” 1s
employed 1n the detailed description or the claims, it 1s
intended to be inclusive 1n a manner similar to the term
“comprising”’ as that term 1s interpreted when employed as
a transitional word 1n a claim.

To the extent that the term “or” 1s used in the detailed
description or claims (e.g., A or B) it 1s intended to mean “A
or B or both”. When the applicants intend to indicate “only
A or B but not both” then the phrase “only A or B but not
both” will be used. Thus, use of the term “or” herein 1s the
inclusive, and not the exclusive use.

What 1s claimed 1is:

1. A computer-implemented method for auditing the
results of a machine learning model, the method comprising;:

retrieving a set of state estimates for original time series

data values from a database under audit, wherein the
cach of the state estimates 1s generated by a state
estimation computation for one of the time series data
values:

reversing the state estimation computation for each of the

state estimates to produce reconstituted time series data
values for each of the state estimates:;

retrieving the original time series data values from the

database under audit;

comparing the original time series data values pairwise

with the reconstituted time series data values to deter-
mine whether the original time series and reconstituted
time series match; and

generating a signal that the database under audit (1) has

not been modified where the original time series and
reconstituted time series match, and (11) has been modi-
fied where the original time series and reconstituted
time series do not match.

2. The method of claim 1, further comprising:

training a multivariate state estimation model with a set of

training values selected from the original time series
values:;

decomposing a matrix associated with the multivanate

state estimation module 1nto a set of eigenvectors;
selecting a subset of major eigenvectors from the set of
eigenvectors; and

creating a limited multivariate state estimation model

from the subset of major eigenvectors;

wherein the reversal of the state estimation computation

further comprises generating the reverse of a compu-
tation by which the limited multivariate state estimation
model forms state estimates.

3. The method of claim 2, further comprising:

omitting training data values from the original time series

data values from the database under audit;
preprocessing the remaining original time series data
values to mitigate the eflects of sensor disturbances and
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generating a model that records the changes to the
remaining original time series data; and

performing state estimation for the preprocessed, remain-
ing original time series data values using the limited
multivariate state estimation model to create a com-
pressed time series database.

4. The method of claim 1, further comprising;:

preprocessing the original time series values to mitigate
ellects of sensor disturbances on quality of the original
time series values; and

generating a data preprocessing model that records one or
more changes to the original time series values during
the preprocessing;

wherein the reversal of the state estimation computation
further comprises:
retrieving the data preprocessing model; and
reversing the preprocess described by the data prepro-

cessing model for each of the state estimates.

5. The method of claim 1, further comprising generating
an electronic data report data structure that includes:

a preprocessing model that records one or more changes
to the original time series values during preprocessing
to mitigate effects of sensor disturbances on quality of
the original time series values;

a compressed time series database generated by perform-
ing state estimation with a limited multivariate state
estimation model and excluding from the compressed
time series database those values that are not param-
eters of the limited multivariate state estimation model;
and

one or more of (1) a set of training values selected from the
original time series values and used to train the limited
multivariate state estimation model, and (11) the limited
multivariate state estimation model.

6. The method of claim 1, wherein the reversal of the state

estimation computation further comprises:

identifying a reverse state estimation computation that
undoes the steps performed by the state estimation
computation to form the state estimates from the origi-
nal time series data values;

generating a set of reverse state estimates for the original
time series data from the set of state estimates, wherein
cach of the reverse state estimates 1s generated by
performing the reverse state estimation for one of the
set of state estimates;

wherein the reconstituted time series data values for each
of the state estimates 1s based on the reverse state
estimates.

7. The method of claim 1, further comprising;:

in response to the signal that the database under audit
(1) has not been modified, generating an electronic

verification report message indicating that the data-
base under audit 1s certified to be uncorrupted and
not tampered with, and
(1) has been modified, generating an electronic verifi-
cation report message indicating that the database
under audit 1s either corrupted or tampered with; and
transmitting the generated electronic verification report to
a computing device to cause the verification report
message to be stored by the computing device or
displayed by the computing device.

8. A non-transitory computer-readable medium storing
computer-executable mstructions for auditing the results of
a machine learning model, that, when executed by at least a
processor ol a computer, cause the computer to:

retrieve a set of state estimates for original time series data
values from a database under audit, wherein the state
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estimates were generated by a state estimation compu-
tation for each of the time series data values;

reverse the state estimation computation for each of the
state estimates to produce reconstituted time series data
values for each of the state estimates;

retrieve the original time series data values from the
database under audit;

compare the original time series data values pairwise with
the reconstituted time series data values to determine
whether the original time series and reconstituted time
series match; and

generate a signal that the database under audit (1) has not
been modified where the original time series and recon-
stituted time series match, and (11) has been modified
where the original time series and reconstituted time
series do not match.

9. The non-transitory computer readable medium of claim

8, wherein the instructions further cause the computer to:
train a multivariate state estimation model with a set of
training values selected from the original time series
values:;

decompose a matrix associated with the multivariate state
estimation module 1nto a set of eigenvectors;

select a subset of major eigenvectors from the set of
eigenvectors; and

create a limited multivariate state estimation model from
the subset of major eigenvectors;

wherein the reversal of the state estimation computation
further comprises generating the reverse of a compu-
tation by which the limited multivariate state estimation
model forms state estimates.

10. The non-transitory computer readable medium of
claim 8, wherein the 1nstructions further cause the computer
to:

omit training data values from the original time series data
values from the database under audit;

preprocess the remaining original time series data values
to mitigate the eflects of sensor disturbances and gen-
erating a model that records the changes to the remain-
ing original time series data; and

perform state estimation for the preprocessed, remaining
original time series data values using the limited mul-
tivariate state estimation model to create a compressed
time series database.

11. The non-transitory computer readable medium of
claim 8, wherein the 1nstructions further cause the computer
to:

preprocess the original time series values to mitigate
ellects of sensor disturbances on quality of the original
time series values; and

generate a data preprocessing model that records one or
more changes to the original time series values during
the preprocessing;

wherein the instructions for reversal of the state estima-
tion computation further cause the computer to:
retrieve the data preprocessing model; and
reverse the preprocess described by the data prepro-

cessing model for each of the state estimates.

12. The non-transitory computer readable medium of
claim 11, wherein the instructions further cause the com-
puter to generate an electronic data report data structure that
includes:

a preprocessing model that records one or more changes
to the original time series values during preprocessing
to mitigate effects of sensor disturbances on quality of
the original time series values;
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a compressed time series database generated by perform-
ing state estimation with a limited multivariate state
estimation model and excluding from the compressed
time series database those values that are not param-
eters of the limited multivariate state estimation model;
and

one or more of (1) a set of training values selected from the
original time series values and used to train the limited
multivariate state estimation model, and (11) the limited
multivariate state estimation model.

13. The method of claim 11, wherein the instructions for
reversal of the state estimation computation further cause the
computer to:

identify a reverse state estimation computation that
undoes the steps performed by the state estimation
computation to form the state estimates from the origi-
nal time series data values:

generate a set of reverse state estimates for the original
time series data from the set of state estimates, wherein
cach of the reverse state estimates 1s generated by
performing the reverse state estimation for one of the
set of state estimates;

wherein the reconstituted time series data values for each
of the state estimates 1s based on the reverse state
estimates.

14. The non-transitory computer readable medium of
claim 8, wherein the instructions further cause the computer
to:

train a multivariate state estimation model with a set of
training values selected from the original time series
values;

decompose a matrix associated with the multivariate state
estimation module 1nto a set of eigenvectors;

select a subset of eigenvectors having the largest eigen-
values from the set of eigenvectors;

create a limited multivanate state estimation model from
the subset of eigenvectors;

preprocess the original time series values to mitigate
ellects of sensor disturbances on quality of the original
time series values;

create a data preprocessing model that records one or
more changes to the original time series values during
the preprocess;

perform state estimation for the original time series data
values using the limited multivariate state estimation
model to create a compressed time series database; and

generate a report including the preprocessing model, the
compressed time series database, and one or more of (1)
the set of training values and (11) the limited multivari-
ate state estimation model;

wherein the set of state estimates 1s the set of state
estimates included 1n the compressed time series data-
base 1n the report, and wherein the reconstituted time
series data 1s generated based on the report.

15. A computing system for auditing the results of a

machine learning model, the system comprising:

a Processor;

a memory operably connected to the processor;

a sensor intertace operably connected to the processor and
memory;

a non-transitory computer-readable medium operably
connected to the processor and memory and storing
computer-executable instructions that when executed
by at least a processor of a computer cause the com-
puter to:
retrieve a set of state estimates for original time series

data values received through the sensor interface
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from a database under audit, wherein the state esti-
mates were generated by a state estimation compu-
tation for each of the time series data values;

reverse the state estimation computation for each of the
state estimates to produce reconstituted time series
data values for each of the state estimates;

retrieve the original time series data values from the
database under audit;

compare the original time series data values pairwise
with the reconstituted time series data values to
determine whether the original time series and recon-
stituted time series match; and

generate a signal that the database under audit (1) has
not been modified where the original time series and
reconstituted time series match, and (11) has been
modified where the original time series and recon-
stituted time series do not match.

16. The computing system of claim 15, wherein the
non-transitory computer-readable medium further comprises
instructions that when executed by at least the processor
cause the computing system to:

train a multivariate state estimation model with a set of
training values selected from the original time series
values:;

decompose a matrix associated with the multivariate state
estimation module 1nto a set of eigenvectors;

select a subset of major eigenvectors from the set of
eigenvectors; and

create a limited multivaniate state estimation model from
the subset of major eigenvectors;

wherein the reversal of the state estimation computation
further comprises generating the reverse of a compu-
tation by which the limited multivariate state estimation
model forms state estimates.

17. The computing system of claim 15, wherein the
non-transitory computer-readable medium further comprises
instructions that when executed by at least the processor
cause the computing system to:

omit training data values from the original time series data
values from the database under audit;

preprocess the remaining original time series data values
to mitigate the effects of sensor disturbances and gen-
erating a model that records the changes to the remain-
ing original time series data; and

perform state estimation for the preprocessed, remaining
original time series data values using the limited mul-
tivariate state estimation model to create a compressed
time series database.

18. The computing system of claim 15, wherein the
instructions for reversal of the state estimation computation
further cause the computing system to generate an electronic
data report data structure that includes:

a preprocessing model that records one or more changes
to the original time series values during preprocessing
to mitigate effects of sensor disturbances on quality of
the original time series values;

a compressed time series database generated by perform-
ing state estimation with a limited multivariate state
estimation model and excluding from the compressed
time series database those values that are not param-
eters of the limited multivariate state estimation model;
and

one or more of (1) a set of training values selected from the
original time series values and used to train the limited
multivariate state estimation model, and (11) the limited
multivariate state estimation model;
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wherein the instructions for reversal of the state estima-
tion computation further cause the computer to:
undo the steps performed by the state estimation com-
putation using a reverse state estimation computa-
tion; and
reverse the preprocess described by the preprocessing
model for each of the state estimates.
19. The computing system of claim 15, wherein the

non-transitory computer-readable medium further comprises
instructions that when executed by at least the processor
cause the computing system to:
identify a reverse state estimation computation that
undoes the steps performed by the state estimation
computation to form the state estimates from the origi-
nal time series data values:
generate a set of reverse state estimates for the original
time series data from the set of state estimates, wherein
cach of the reverse state estimates 1s generated by
performing the reverse state estimation for one of the
set of state estimates:;
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wherein the reconstituted time series data values for each
of the state estimates 1s based on the reverse state
estimates.

20. The computing system of claim 15, wherein the

5 non-transitory computer-readable medium further comprises
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instructions that when executed by at least the processor
cause the computing system to:
in response to the signal that the database under audit
(1) has not been modified, generate an electronic veri-
fication report message indicating that the database
under audit 1s certified to be uncorrupted and not
tampered with, and
(1) has been modified, generate an electronic verifica-
tion report message indicating that the database
under audit 1s either corrupted or tampered with; and
transmit the generated electronic verification report to a
computing device to cause the verification report mes-
sage to be stored by the computing device or displayed
by the computing device.
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