
Tuesday, May 19, 2015  1

Applications of Self-Awareness, 
Situation Awareness 
and Feedback Control

Ken Baclawski
College of Computer and Information Science

Northeastern University



Tuesday, May 19, 2015  2

Outline

● Cognitive Systems
– Cognitive Loop

– System 
Functionality

● Situation Awareness
– Formalization

– Situation 
Awareness 
Assistant

● Self-Awareness
– Functionality

– Software 
composition

● Feedback Control

– Models
– Stability



Tuesday, May 19, 2015  3

Application Domains

● Supply Logistics
● Asset Repair
● Radio Communication
● Data Link Network Communication
● Denial of Service Defense
● Electromagnetic Surveillance
● Non-Preemptive Real-Time Task Scheduling



Tuesday, May 19, 2015  4

Outline

● Cognitive Systems
– Cognitive Loop

– System 
Functionality

● Situation Awareness
– Formalization

– Situation 
Awareness 
Assistant

● Self-Awareness
– Functionality

– Software 
composition

● Feedback Control

– Models
– Stability



Tuesday, May 19, 2015  5

Cognitive System

● Can reason, using substantial amounts of 
appropriately represented knowledge

● Can learn from its experience so that it 
performs better tomorrow than it did today

● Can explain itself and be told what to do
● Can be aware of its own capabilities and 

reflect on its own behavior
● Can respond robustly to surprise.
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Cognitive System

● Often viewed according to Boyd’s OODA 
(Observe, Orient, Decide, Act) loop. 

● Also presented in the less precise 
perception–reasoning–action triad.

● The cognitive loop is fundamental to many 
systems.

– Often regarded as the most important 
problem of artificial intelligence research.
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OODA Loop
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OODA Loop

● Observe, Orient, Decide, and Act (OODA) Loop

– Observe the entities and environment,

– Orient the participant to the observations, by cultural 
tradition, generic heritage, previous experience, analysis 
and synthesis, new information

– Decide on the directives based on the hypotheses that best 
explains the observations, and

– Act on the directives to interact with the entities and 
environment, to test the hypothesis

● Developed by a fighter pilot: Colonel John Boyd

– Now an important concept in litigation, business and military 
strategy
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KIDS
● Knowledge Intensive Data-Processing System

– Developed by Dieter Gawlick, Adel Ghoneimy, Zhen Hua 
Liu, Eric Chan, and others at Oracle

– Formalization of the OODA Loop

– Designed to be customized with a domain ontology and 
transformation rules

● References
– www.cidrdb.org/cidr2015/Papers/15_Abstract43GD.pdf

– Enabling Enhanced OODA Loop with Modern Information Technology, 
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2014_02_13#nid468H

– Situation Aware Computing for Big Data, Workshop on Semantics for Big Data on 
the Internet of Things (SemBIoT 2014), 2014 IEEE International Conference on 
Big Data, Oct 27-30, Washington DC.
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The KIDS FIHD/CARE Loop
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KIDS Ontology
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Cognitive System Functionality
● Observe

– Information collection and fusion

● Orient
– Situation awareness

– Self-awareness

● Decide
– Awareness of constraints and 

requirements

– Flexible rule and query capability
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Cognitive System Functionality

● Act
– Command execution

● Interact
– Dynamic interoperability at any layer

– Negotiation for resources

● Control
– Controller for robustness and stability
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Situation Awareness

● Situation Awareness (SAW) (Endsley)
– The perception of the elements in the 

environment within a volume of time and 
space, the comprehension of their meaning, 
and the projection of their status in the near 
future

● Situation Assessment
– A process that estimates and updates that 

state (belief revision)
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Formalization of Situation

● Situation Theory of Barwise (1987) and Devlin (1991)

– Situations are objects that can be part of other situations.

– The fundamental notion is the infon:

If L is a location in a situation s, then L is of type LOC, 

    the infon is <<of-type, L, LOC, 1>> 

    and one has s ╞ <<of-type, L, LOC, 1>>

● Formulated as the Situation Theory Ontology using OWL in 
Matheus, Kokar, Baclawski (2003)

– See www.ccs.neu.edu/home/kenb/STO.owl

– Inference is implemented with rules which can be logical or 
probabilistic.

– Prototype Situation Awareness Assistant implemented STO.
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Situation Awareness Assistant 
(SAWA)
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Situation Awareness Core Ontology
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Event Ontology
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Supply Logistics Ontology



Tuesday, May 19, 2015  24

RuleVISor Rule Editor
● Graphical SWRL Editor
● Support for 

– all RuleML capabilities (everything in SWRL 
from ruleml: namespace) 

– all new SWRL elements (from swrlx: namespace, 
e.g., swrlx:builtin)

● Does not support arbitrary embedded 
OWL constructs
– OWL Ontologies are required to be external

● Ontologies used as basis for rule 
building blocks
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RuleVISor GUI
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Supply Logistics Rule Set

 
<rule rlab="has Supply Line">
   <body>
     <hsl:inRegion     sub="?unit"     data="?region"/>
     <hsl:isSuppliable sub="?region"   data="true"/>
   </body>
   <head>
     <hsl:hasSupplyLine        sub="?unit"     data="true"/>
   </head>
 </rule>

 <rule rlab="isSuppliable">
   <body>
     <hsl:hasSupplyStation     sub="?region"   data="true"/>
     <hsl:underFriendlyControl sub="?region"   data="true"/>
   </body>
   <head>
     <hsl:isSuppliable sub="?region"   data="true"/>
   </head>
 </rule>

 <rule rlab="isSuppliable2">
   <body>
     <hsl:connects     sub="?road"     data="?region1"/>
     <hsl:connects     sub="?road"     data="?region2"/>
     <swrlb:notEqual
       arg1="?region1"
       arg2="?region2"/>
     <hsl:isPassable   sub="?road"     data="true"/>
     <hsl:isSuppliable sub="?region2"  data="true"/>
   </body>
   <head>
     <hsl:isSuppliable sub="?region1"  data="true"/>
   </head>
 </rule>
 

 <rule rlab="underFriendlyControl">
   <body>
     <hsl:inRegion     sub="?unit"     data="?region"/>
     <hsl:memberOf     sub="?unit"     data="?force"/>
     <hsl:FriendlyForce ind="?force"/>
   </body>
   <head>
     <hsl:underFriendlyControl sub="?region"   data="true"/>
   </head>
 </rule>

 <rule rlab="isPassable">
   <body>
     <hsl:connects     sub="?road"     data="?regionA"/>
     <hsl:connects     sub="?road"     data="?regionB"/>
     <swrlb:notEqual
       arg1="?regionA"
       arg2="?regionB"/>
     <hsl:underFriendlyControl sub="?regionA"  data="?force1"/>
     <hsl:underFriendlyControl sub="?regionB"  data="?force2"/>
   </body>
   <head>
     <hsl:isPassable   sub="?road"     data="true"/>
   </head>
 </rule>

 <rule rlab="hasSupplyStation">
   <body>
     <hsl:inRegion     sub="?X"        data="?region"/>
     <hsl:SupplyStation ind="?X"/>
   </body>
   <head>
     <hsl:hasSupplyStation     sub="?region"   data="true"/>
   </head>
 </rule>
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BaseVISor Rule Engine

● Forward chaining, Rete-based rule engine
● Native support for RDF triples
● Support for recursive What-If scenarios
● Support for uncertainty propagation using 

Bayesian networks
● High performance

– Next slide compares BaseVISor with Jess

● Implemented in Java
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SAWA Runtime GUI
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SAWA Accomplishments
● SAWA is a general purpose assistant for situation awareness:

– monitors the evolution of relevant higher-order relations within a 
situation.

– supports formal reasoning techniques for level-2 fusion.  

– based on the Semantic Web languages OWL and SWRL.

– performs relevance reasoning.
● The domain ontology and rules are constructed and checked using an 

ontology editor, rule editor and consistency checker.

● At runtime events are processed to determine relevance and to infer 
higher-order relations.

● As higher-order relations are detected they are passed to the GUI, which 
displays them in both tabular and graphical forms.

● The query capability allows for both ordinary and “what if” queries.
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Self-Awareness

● Self-awareness is one part of cognition in 
general:

– System is aware of its own capabilities and can 
reflect on its own behavior

– System can modify its behavior to improve its 
performance

● Application domains
– Radio communication (waveforms)

– Data link layer communication

– Defending against denial of service attacks
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Ordinary Software
● Local information is stored in a data model that does 

NOT have high expressivity and machine 
processable semantics

– Scalar variables and some simple structures can 
be exchanged using XML or JSON.

– The capabilities and structure of a component 
cannot be exchanged.

● Messages between communication nodes are limited 
to the structure defined by the protocol

– Messages in XML or JSON must be fully explicit
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Cognitive Software
● Self-awareness enables

– Full access to all processing variables (via 
reflection)

– Inference can be used to reduce the 
communication overhead significantly (via 
ontology and rules)

– Full access to all component capabilities and 
structure (via ontology and rules)

– Dynamic reconfigurability (using a library of 
annotated modules)

● These were first demonstrated in joint work with 
my colleagues
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Self-Awareness Demonstration
● Generation of Waveforms from Descriptions (L. Lechowicz, 

Ph.D. thesis)

● Objective: Verify that dynamic Ontology-based radio 
reconfigurability is feasible

● Transfer of knowledge (description of BPSK31, QPSK31, 
RTTY waveforms)

● Transferred knowledge integrated in the local knowledge base

● A waveform described in OWL/Rules constructed from its 
description

● Finite state machine built from the ontological description

● A complex software module composed from simpler 
software modules dynamically
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Colimits

● The colimit of a 
commutative diagram of 
module morphisms (for 
example, X, Y and Z in 
the figure) is the module 
P in the figure.

● This example is a 
pushout.  An actual 
system has a much 
larger number of 
modules.
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Feedback Control

● The basic function of the software system is regarded 
as a Plant to be controlled. 

● The behavior of the Plant and the Environment is 
modeled dynamic system.

● Measurable inputs to the Plant are identified and split 
into control inputs and disturbances.  

– Control inputs are used for controlling the behavior 
of the Plant, while

– Disturbances alter the behavior of the Plant in an 
unpredictable way.
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Feedback Control

● An additional subsystem is added for changing the 
values of the control inputs to the Plant, called the 
Controller subsystem. 

● Yet another subsystem can be added for computing 
feedback, called the Quality of Service (QoS) 
subsystem.

– This feedback is used by the Controller to 
compute control inputs.
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Feedback Control Models
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Self-Controlling Software Model
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Self-Controlling Software Model
● Feedback loop

– The Controller sets parameters to the Plant 
based upon goal and feedback received from 
the Quality-of-Service subsystem.

● Adaptation loop
– The Evaluator evaluates the behavior and 

performance to determine whether the model 
of the Plant is appropriate, and 

– adapts the model, 

– which in turn triggers a change in the control 
law.
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Self-Controlling Software Model (SCSM)

● Reconfiguration loop

– Relatively costly action. 

– Performed by the Reconfigurer on request of the 
Evaluator. 

– Reconfiguration can involve structural changes in 
the Plant model, Quality-of-Service, Evaluator, 
Controller, Controller Designer, goal, or even the 
Plant. 

– The Reconfigurer uses 
● Specification Database
● Component Database
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Self-Controlling Software Model

● Specification Database

– Component specifications

– High-level system requirement

– High-level system goal

● Component Database

– Modules used for assembling the system

● Module composition

– Based on the category theory notion of colimit

– Requires checking commutativity of the morphisms

– Requires formal proof of correctness of system requirement
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Stability
● A software system is modeled as a discrete event system 

(DES).

● There are two dozen or so notions of stability for DES, 
such as: 

– stability in the sense of Lyapunov

– asymptotic stability

– asymptotic stability in the large

– exponential stability

– exponential stability in the large

– stability in the sense of Lagrange

– uniform boundedness

– uniform ultimate boundedness
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Stability

● Sufficient conditions for stability use a discrete analog of 
Lyapunov functions.

– Difficult to find a Lyapunov function for complex 
dynamical systems

– Not even possible, if the software system is too complex 
to have a closed-form mathematical formulation 

● However, one can often find a bound 

– Bound is a form of worst case analysis

– Bound is much simpler and tractable

– Efficiency will depend on quality of the bound

– Continual evaluation is required

– The SCSM is designed for this purpose
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Other Issues

● Controllability
● Observability
● Robustness (graceful 

degradation)
● Autonomy
● Generality

● Chattering
● Scheduling
● Proactive 

reconfiguration
● Efficiency
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