
Tuesday, May 19, 2015 1

Applications of Self-Awareness,
Situation Awareness
and Feedback Control

Ken Baclawski
College of Computer and Information Science

Northeastern University

Tuesday, May 19, 2015 2

Outline

● Cognitive Systems
– Cognitive Loop

– System
Functionality

● Situation Awareness
– Formalization

– Situation
Awareness
Assistant

● Self-Awareness
– Functionality

– Software
composition

● Feedback Control

– Models
– Stability

Tuesday, May 19, 2015 3

Application Domains

● Supply Logistics
● Asset Repair
● Radio Communication
● Data Link Network Communication
● Denial of Service Defense
● Electromagnetic Surveillance
● Non-Preemptive Real-Time Task Scheduling

Tuesday, May 19, 2015 4

Outline

● Cognitive Systems
– Cognitive Loop

– System
Functionality

● Situation Awareness
– Formalization

– Situation
Awareness
Assistant

● Self-Awareness
– Functionality

– Software
composition

● Feedback Control

– Models
– Stability

Tuesday, May 19, 2015 5

Cognitive System

● Can reason, using substantial amounts of
appropriately represented knowledge

● Can learn from its experience so that it
performs better tomorrow than it did today

● Can explain itself and be told what to do
● Can be aware of its own capabilities and

reflect on its own behavior
● Can respond robustly to surprise.

Tuesday, May 19, 2015 6

Cognitive System

● Often viewed according to Boyd’s OODA
(Observe, Orient, Decide, Act) loop.

● Also presented in the less precise
perception–reasoning–action triad.

● The cognitive loop is fundamental to many
systems.

– Often regarded as the most important
problem of artificial intelligence research.

Tuesday, May 19, 2015 7

OODA Loop

Tuesday, May 19, 2015 8

OODA Loop

● Observe, Orient, Decide, and Act (OODA) Loop

– Observe the entities and environment,

– Orient the participant to the observations, by cultural
tradition, generic heritage, previous experience, analysis
and synthesis, new information

– Decide on the directives based on the hypotheses that best
explains the observations, and

– Act on the directives to interact with the entities and
environment, to test the hypothesis

● Developed by a fighter pilot: Colonel John Boyd

– Now an important concept in litigation, business and military
strategy

Tuesday, May 19, 2015 9

KIDS
● Knowledge Intensive Data-Processing System

– Developed by Dieter Gawlick, Adel Ghoneimy, Zhen Hua
Liu, Eric Chan, and others at Oracle

– Formalization of the OODA Loop

– Designed to be customized with a domain ontology and
transformation rules

● References
– www.cidrdb.org/cidr2015/Papers/15_Abstract43GD.pdf

– Enabling Enhanced OODA Loop with Modern Information Technology,
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2014_02_13#nid468H

– Situation Aware Computing for Big Data, Workshop on Semantics for Big Data on
the Internet of Things (SemBIoT 2014), 2014 IEEE International Conference on
Big Data, Oct 27-30, Washington DC.

Tuesday, May 19, 2015 10

The KIDS FIHD/CARE Loop

Tuesday, May 19, 2015 11

KIDS Ontology

Tuesday, May 19, 2015 12

Cognitive System Functionality
● Observe

– Information collection and fusion

● Orient
– Situation awareness

– Self-awareness

● Decide
– Awareness of constraints and

requirements

– Flexible rule and query capability

Tuesday, May 19, 2015 13

Cognitive System Functionality

● Act
– Command execution

● Interact
– Dynamic interoperability at any layer

– Negotiation for resources

● Control
– Controller for robustness and stability

Tuesday, May 19, 2015 14

Outline

● Cognitive Systems
– Cognitive Loop

– System
Functionality

● Situation Awareness
– Formalization

– Situation
Awareness
Assistant

● Self-Awareness
– Functionality

– Software
composition

● Feedback Control

– Models
– Stability

Tuesday, May 19, 2015 15

Situation Awareness

● Situation Awareness (SAW) (Endsley)
– The perception of the elements in the

environment within a volume of time and
space, the comprehension of their meaning,
and the projection of their status in the near
future

● Situation Assessment
– A process that estimates and updates that

state (belief revision)

Tuesday, May 19, 2015 16

Formalization of Situation

● Situation Theory of Barwise (1987) and Devlin (1991)

– Situations are objects that can be part of other situations.

– The fundamental notion is the infon:

If L is a location in a situation s, then L is of type LOC,

 the infon is <<of-type, L, LOC, 1>>

 and one has s ╞ <<of-type, L, LOC, 1>>

● Formulated as the Situation Theory Ontology using OWL in
Matheus, Kokar, Baclawski (2003)

– See www.ccs.neu.edu/home/kenb/STO.owl

– Inference is implemented with rules which can be logical or
probabilistic.

– Prototype Situation Awareness Assistant implemented STO.

Tuesday, May 19, 2015 18

Situation Awareness Assistant
(SAWA)

Tuesday, May 19, 2015 19

Situation Awareness Process

Creat
e

Ontol
ogies

Ontologies
(classes,
relations,

rules)

Other
Ontologies

Meta
Annot
ations
Proce

ss

Creat
e

Instan
ces

Instance
Annotations

Deter
mine
Relev
ance

Situati
on

Annot
ation
Proce
ssor

Instan
tiate

Relati
ons

Meta
Annotation
of Rules

Creat
e

Goal

Relevant
Relations

New
Relations

Goal
Rule

Ontology

Situation
Annotations

SAW
Ontology

Scenario
Initializer

Knowledge
Engineer

Commander

Commander
or

Situation Analyst
Sen
sor Sen

sorSen
sorSen

sor

Verify
New
Relati
ons

Level 1
Sensors

Fusion
Ontology

Uncertainty
Ontology

Tuesday, May 19, 2015 20

Situation Awareness Core Ontology

Tuesday, May 19, 2015 21

Event Ontology

Tuesday, May 19, 2015 22

Supply Logistics Ontology

Tuesday, May 19, 2015 24

RuleVISor Rule Editor
● Graphical SWRL Editor
● Support for

– all RuleML capabilities (everything in SWRL
from ruleml: namespace)

– all new SWRL elements (from swrlx: namespace,
e.g., swrlx:builtin)

● Does not support arbitrary embedded
OWL constructs
– OWL Ontologies are required to be external

● Ontologies used as basis for rule
building blocks

Tuesday, May 19, 2015 25

RuleVISor GUI

Tuesday, May 19, 2015 26

Supply Logistics Rule Set

<rule rlab="has Supply Line">
 <body>
 <hsl:inRegion sub="?unit" data="?region"/>
 <hsl:isSuppliable sub="?region" data="true"/>
 </body>
 <head>
 <hsl:hasSupplyLine sub="?unit" data="true"/>
 </head>
 </rule>

 <rule rlab="isSuppliable">
 <body>
 <hsl:hasSupplyStation sub="?region" data="true"/>
 <hsl:underFriendlyControl sub="?region" data="true"/>
 </body>
 <head>
 <hsl:isSuppliable sub="?region" data="true"/>
 </head>
 </rule>

 <rule rlab="isSuppliable2">
 <body>
 <hsl:connects sub="?road" data="?region1"/>
 <hsl:connects sub="?road" data="?region2"/>
 <swrlb:notEqual
 arg1="?region1"
 arg2="?region2"/>
 <hsl:isPassable sub="?road" data="true"/>
 <hsl:isSuppliable sub="?region2" data="true"/>
 </body>
 <head>
 <hsl:isSuppliable sub="?region1" data="true"/>
 </head>
 </rule>

 <rule rlab="underFriendlyControl">
 <body>
 <hsl:inRegion sub="?unit" data="?region"/>
 <hsl:memberOf sub="?unit" data="?force"/>
 <hsl:FriendlyForce ind="?force"/>
 </body>
 <head>
 <hsl:underFriendlyControl sub="?region" data="true"/>
 </head>
 </rule>

 <rule rlab="isPassable">
 <body>
 <hsl:connects sub="?road" data="?regionA"/>
 <hsl:connects sub="?road" data="?regionB"/>
 <swrlb:notEqual
 arg1="?regionA"
 arg2="?regionB"/>
 <hsl:underFriendlyControl sub="?regionA" data="?force1"/>
 <hsl:underFriendlyControl sub="?regionB" data="?force2"/>
 </body>
 <head>
 <hsl:isPassable sub="?road" data="true"/>
 </head>
 </rule>

 <rule rlab="hasSupplyStation">
 <body>
 <hsl:inRegion sub="?X" data="?region"/>
 <hsl:SupplyStation ind="?X"/>
 </body>
 <head>
 <hsl:hasSupplyStation sub="?region" data="true"/>
 </head>
 </rule>

Tuesday, May 19, 2015 27

BaseVISor Rule Engine

● Forward chaining, Rete-based rule engine
● Native support for RDF triples
● Support for recursive What-If scenarios
● Support for uncertainty propagation using

Bayesian networks
● High performance

– Next slide compares BaseVISor with Jess

● Implemented in Java

Tuesday, May 19, 2015 28

Tuesday, May 19, 2015 29

SAWA Runtime GUI

Tuesday, May 19, 2015 30

SAWA Accomplishments
● SAWA is a general purpose assistant for situation awareness:

– monitors the evolution of relevant higher-order relations within a
situation.

– supports formal reasoning techniques for level-2 fusion.

– based on the Semantic Web languages OWL and SWRL.

– performs relevance reasoning.
● The domain ontology and rules are constructed and checked using an

ontology editor, rule editor and consistency checker.

● At runtime events are processed to determine relevance and to infer
higher-order relations.

● As higher-order relations are detected they are passed to the GUI, which
displays them in both tabular and graphical forms.

● The query capability allows for both ordinary and “what if” queries.

Tuesday, May 19, 2015 31

Outline

● Cognitive Systems
– Cognitive Loop

– System
Functionality

● Situation Awareness
– Formalization

– Situation
Awareness
Assistant

● Self-Awareness
– Functionality

– Software
composition

● Feedback Control

– Models
– Stability

Tuesday, May 19, 2015 32

Self-Awareness

● Self-awareness is one part of cognition in
general:

– System is aware of its own capabilities and can
reflect on its own behavior

– System can modify its behavior to improve its
performance

● Application domains
– Radio communication (waveforms)

– Data link layer communication

– Defending against denial of service attacks

Tuesday, May 19, 2015 33

Ordinary Software
● Local information is stored in a data model that does

NOT have high expressivity and machine
processable semantics

– Scalar variables and some simple structures can
be exchanged using XML or JSON.

– The capabilities and structure of a component
cannot be exchanged.

● Messages between communication nodes are limited
to the structure defined by the protocol

– Messages in XML or JSON must be fully explicit

Tuesday, May 19, 2015 34

Cognitive Software
● Self-awareness enables

– Full access to all processing variables (via
reflection)

– Inference can be used to reduce the
communication overhead significantly (via
ontology and rules)

– Full access to all component capabilities and
structure (via ontology and rules)

– Dynamic reconfigurability (using a library of
annotated modules)

● These were first demonstrated in joint work with
my colleagues

Tuesday, May 19, 2015 35

Self-Awareness Demonstration
● Generation of Waveforms from Descriptions (L. Lechowicz,

Ph.D. thesis)

● Objective: Verify that dynamic Ontology-based radio
reconfigurability is feasible

● Transfer of knowledge (description of BPSK31, QPSK31,
RTTY waveforms)

● Transferred knowledge integrated in the local knowledge base

● A waveform described in OWL/Rules constructed from its
description

● Finite state machine built from the ontological description

● A complex software module composed from simpler
software modules dynamically

Tuesday, May 19, 2015 37

Colimits

● The colimit of a
commutative diagram of
module morphisms (for
example, X, Y and Z in
the figure) is the module
P in the figure.

● This example is a
pushout. An actual
system has a much
larger number of
modules.

Tuesday, May 19, 2015 38

Outline

● Cognitive Systems
– Cognitive Loop

– System
Functionality

● Situation Awareness
– Formalization

– Situation
Awareness
Assistant

● Self-Awareness
– Functionality

– Software
composition

● Feedback Control

– Models
– Stability

Tuesday, May 19, 2015 39

Feedback Control

● The basic function of the software system is regarded
as a Plant to be controlled.

● The behavior of the Plant and the Environment is
modeled dynamic system.

● Measurable inputs to the Plant are identified and split
into control inputs and disturbances.

– Control inputs are used for controlling the behavior
of the Plant, while

– Disturbances alter the behavior of the Plant in an
unpredictable way.

Tuesday, May 19, 2015 40

Feedback Control

● An additional subsystem is added for changing the
values of the control inputs to the Plant, called the
Controller subsystem.

● Yet another subsystem can be added for computing
feedback, called the Quality of Service (QoS)
subsystem.

– This feedback is used by the Controller to
compute control inputs.

Tuesday, May 19, 2015 41

Feedback Control

● An additional subsystem is added for changing the
values of the control inputs to the Plant, called the
Controller subsystem.

● Yet another subsystem can be added for computing
feedback, called the Quality of Service (QoS)
subsystem.

– This feedback is used by the Controller to
compute control inputs.

Tuesday, May 19, 2015 42

Feedback Control Models

Tuesday, May 19, 2015 43

Self-Controlling Software Model

Tuesday, May 19, 2015 44

Self-Controlling Software Model
● Feedback loop

– The Controller sets parameters to the Plant
based upon goal and feedback received from
the Quality-of-Service subsystem.

● Adaptation loop
– The Evaluator evaluates the behavior and

performance to determine whether the model
of the Plant is appropriate, and

– adapts the model,

– which in turn triggers a change in the control
law.

Tuesday, May 19, 2015 45

Self-Controlling Software Model (SCSM)

● Reconfiguration loop

– Relatively costly action.

– Performed by the Reconfigurer on request of the
Evaluator.

– Reconfiguration can involve structural changes in
the Plant model, Quality-of-Service, Evaluator,
Controller, Controller Designer, goal, or even the
Plant.

– The Reconfigurer uses
● Specification Database
● Component Database

Tuesday, May 19, 2015 46

Self-Controlling Software Model

● Specification Database

– Component specifications

– High-level system requirement

– High-level system goal

● Component Database

– Modules used for assembling the system

● Module composition

– Based on the category theory notion of colimit

– Requires checking commutativity of the morphisms

– Requires formal proof of correctness of system requirement

Tuesday, May 19, 2015 47

Stability
● A software system is modeled as a discrete event system

(DES).

● There are two dozen or so notions of stability for DES,
such as:

– stability in the sense of Lyapunov

– asymptotic stability

– asymptotic stability in the large

– exponential stability

– exponential stability in the large

– stability in the sense of Lagrange

– uniform boundedness

– uniform ultimate boundedness

Tuesday, May 19, 2015 48

Stability

● Sufficient conditions for stability use a discrete analog of
Lyapunov functions.

– Difficult to find a Lyapunov function for complex
dynamical systems

– Not even possible, if the software system is too complex
to have a closed-form mathematical formulation

● However, one can often find a bound

– Bound is a form of worst case analysis

– Bound is much simpler and tractable

– Efficiency will depend on quality of the bound

– Continual evaluation is required

– The SCSM is designed for this purpose

Tuesday, May 19, 2015 49

Other Issues

● Controllability
● Observability
● Robustness (graceful

degradation)
● Autonomy
● Generality

● Chattering
● Scheduling
● Proactive

reconfiguration
● Efficiency

Tuesday, May 19, 2015 50

Bibliography/Acknowledgements

● General Publications
● Classified Publications
● Control Theory Publications
● Self-Awareness Publications
● Situation Awareness Publications
● Wireless Communication Publications
● Website: www.ccs.neu.edu/home/kenb

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

