s of Self-Awareness,
lon Awareness
edback Control

Ken Baclawski
College of Computer and Information Science
Northeastern University

Tuesday, May 19, 2015

Outline

S » Self-Awareness
- Functionality
- Software
ity composition

e Situation Awareness ¢ Feedback Control

— Formalization - Models
— Situation - Stability
Awareness

Assistant

Tuesday, May 19, 2015

Application Domains

» Supply Logistics

* Asset Repair

* Radio Communication

» Data Link Network Communication

e Denial of Service Defense

» Electromagnetic Surveillance

* Non-Preemptive Real-Time Task Scheduling

Tuesday, May 19, 2015

o Self-Awareness

- Functionality

- Software
composition

lon Awareness ¢ Feedback Control

— Formalization - Models
— Situation - Stability
Awareness

Assistant

Tuesday, May 19, 2015

Cognitive System

» Can reason, using substantial amounts of
appropriately represented knowledge

e Can learn from its experience so that it
performs better tomorrow than it did today

 Can explain itself and be told what to do

» Can be aware of its own capabilities and
reflect on its own behavior

» Can respond robustly to surprise.

Tuesday, May 19, 2015

Cognitive System

» Often viewed according to Boyd's OODA
(Observe, Orient, Decide, Act) loop.

* Also presented in the less precise
perception—reasoning—action triad.

* The cognitive loop is fundamental to many
systems.

- Often regarded as the most important
problem of artificial intelligence research.

Tuesday, May 19, 2015

OODA Loop

Observe Orient Decide Act
Implicit Implicit
Guidance uidance
: & Control & Control
Unfolding
Circumstances T'a""'°”s
Feed Sgggge 2%2':.5 Decision Feed Action
Observatons } (Hypothesis) (Test)
Forward Forward
New Prewous
OUtSIde Informatlon Experlence
Information
Unfolding
Unfolding Interaction
Interaction Feedback With
With Feedback Environment
Feedback |

Environment

Tuesday, May 19, 2015

John Boyd's OODA Loop

ODA Loop

ide, and Act (OODA) Loop

tities and environment,

ipant to the observations, by cultural
ric heritage, previous experience, analysis
esis, new information

- Decide on the directives based on the hypotheses that best
explains the observations, and

— Act on the directives to interact with the entities and
environment, to test the hypothesis

* Developed by a fighter pilot: Colonel John Boyd

- Now an important concept in litigation, business and military
strategy

Tuesday, May 19, 2015

KIDS

Data-Processing System

leter Gawlick, Adel Ghoneimy, Zhen Hua
, and others at Oracle

the OODA Loop

esigned to be customized with a domain ontology and
transformation rules

» References

- www.cidrdb.org/cidr2015/Papers/15_Abstract43GD.pdf

- Enabling Enhanced OODA Loop with Modern Information Technology,
http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2014 _02_13#nid468H

- Situation Aware Computing for Big Data, Workshop on Semantics for Big Data on
the Internet of Things (SemBloT 2014), 2014 IEEE International Conference on
Big Data, Oct 27-30, Washington DC.

Tuesday, May 19, 2015

The KIDS FIHD/CARE Loop

Tuesday, May 19, 2015

Classification

Deduction

Assessment

Decision "

o -

FIHD = Facts, Information, Hypotheses, and Directives

)]
()
.
-
-
(&)
-
B
fm?
(/p

uononpqy

CARE = Classification, Assessment, Resolution, and Enactment

10

KIDS Ontology

PerceptionFeature
is evaluated -Value

-\Walid Time

evaluates |-Entity

-entity Type : EntityType . -entityType | EntityType
-featureType : <<FeaturaTypei>> " -productCategory LfeatureType | <<FealureType2>>

evaluates
-pro ductNumber 0.

FSD , s evaluated by

uses 0. | isinvokedby 0.7
pvaluate s (| g Classify produces
is produced by Vi ks used by -Guard i is evaluatad by
1 b
et vaiidTime 0 ok
-/ ValidTime is rated by 1
- [Entity

1

s produces . is used

1.* is invoked by

0.*
invokes Assoss
- Guard
used by| - TenTime isinvoked by 1.%
VA ValidTime

Activity i
1 is usad by~ us 0.
used by .

1 IDirac tive Resolva 1
is rated by [* { validTime -Guard produces by
o 1 Entity ;
rates G luated b ¥
is evaluated by 4 -possbieTools:
is produd 1 1 -possibleSolution

aluate s

0." | uses

0.’ invokes

evaluates 0.

<<Enume ration>>
FeatureTyped
ROty -cost
~entity Type : EntityType -tools
-featureTypa | <<FeatunTyped>> -salution
-suggestion

Tuesday, May 19, 2015

stem Functionality

collection and fusion

ion awareness
- Self-awareness

 Decide

— Awareness of constraints and
requirements

— Flexible rule and query capability

Tuesday, May 19, 2015 12

tem Functionality

ution

mic interoperability at any layer
- Negotiation for resources

» Control
— Controller for robustness and stability

Tuesday, May 19, 2015

13

o Self-Awareness

- Functionality

- Software
composition

on Awareness ¢ Feedback Control

— Formalization - Models
- Situation - Stability
Awareness

Assistant

Tuesday, May 19, 2015

14

Situation Awareness

e Situation Awareness (SAW) (Endsley)

- The perception of the elements in the
environment within a volume of time and
space, the comprehension of their meaning,
and the projection of their status in the near
future

e Situation Assessment

— A process that estimates and updates that
state (belief revision)

Tuesday, May 19, 2015 15

Formalization of Situation

» Situation Theory of Barwise (1987) and Devlin (1991)

— Situations are objects that can be part of other situations.

- The fundamental notion is the infon:
If L is a location in a situation s, then L is of type LOC,
the infon is <<of-type, L, LOC, 1>>
and one has s F <<of-type, L, LOC, 1>>

 Formulated as the Situation Theory Ontology using OWL in
Matheus, Kokar, Baclawski (2003)

- See www.ccs.neu.edu/home/kenb/STO.owl

- Inference is implemented with rules which can be logical or
probabilistic.

- Prototype Situation Awareness Assistant implemented STO.

Tuesday, May 19, 2015

16

Situation Awareness Assistant
(SAWA)

Validators/ Knowledge Enowledge |
Consistency Converters | I t
Chedcers | | Comerers| Management
S Co mpoI ents

Instance Ontology Eule
Manager Manager Manager

Cornponent

" Sitmation
4 Manager
(SMC]

Eve nt
Manager
Component

. (EMC)

Tuesday, May 19, 2015

18

Situation Awareness Process

Rule
Ontology

Creat
SAW e
Ontology Goal
Commander
|]
Ontologies
(classes,
relations,
rules)
Knowledge
Engineer
Other ®
Ontologies II‘

Scenario
Initializer

Tuesday, May 19, 2015

Level 1

Meta

Annotation

of Rules

Instance
Annotations

Sensors

Situati
on
Annot
ation
Proce
ssor

Verify
New
Relati
ons

Goal

Relevant
Relations

Situation
Annotations

Commander
or
Situation Analyst

Fusion
Ontology
Instan
tiate
Relati
ons Uncertainty
Ontology

A

New
Relations

Situation Awareness Core Ontology

Goal
=
hasGoal
\
Situation
[[:]] hasOhject
] relevartRelation
[al hazZoal T
\ relevantRelation
1
has0bject
/
i
Attribute Object Relation
o rnodelledBy hasittribute o definedBy
rd
nbjectt)wner relation definedBy
modelledBy aﬁrihy\t\u‘a / hasAftribute onObject
ValueFunction AttributeTuple RelationTuple Rule
0 hasAdiributealue @ et @ firing
I attribute (o) relation
@ objectCrwner (o) hasFelation'alue \
||' \\ \
/ hasRelationvalue '||I
hasAttributevalue |
W |
- firing
AttributeValue Event RelationvYalue |
(@ certairty (1] time [0 truth'alue ||
@ definingExternalEvent @ defininginternalEvent /
] attrivkite’valie | /
|
) definesRelationvalug "':’
Source EIE SIS S defininginternalBvent . RuleFiring
definesAtttributevalue f /
1
W I
ExternalEvent InternalEvent
SOUrce
T @ definesAttrbuevaiue) cause
T3] ource] definezRelstion® alue

Event Ontology

Event Ohject Attribute
time:dxsd; dateTime objegt |-d:&rdfsiResource stribute | TAMedrdfsResource
-source: &rdfs Eesource = dype: &rdfs;Resource =w -value: &rfs;Literal

* * “inits &rdfs; Literal
-certainty: &xsd float

Event
time (max:1) object
xst:dat=Time Oigect
souree (max:1) attribute
id (max:1) tvpe (max:1) Attribute
name (max:1) wvalsa (max:1) vnits (max:1) certainty (max:1)
rdfz:Resovrce rdfs:Literal xzd:float

Tuesday, May 19, 2015

Supply Logistics Ontology

Road

[i]] izPaszahle
@ connects
@ cardinality 2

EnemyForce

Tuesday, May 19, 2015

.7 -
x -
- o
o

e tonnects

Unit

infegion

tremberCf

hazsupplyLine

L2 o

FriendlyForce

SupplyStation

inRegion

mRegmn

Region

utiderFriendlyControl

izSuppliable

“'“‘“*a.
-
r

cortsing

@@@@

hazsupply Station

22

RuleVISor Rule Editor

Graphical SWRL Editor

Support for

all RuleML capabilities (everything in SWRL
from ruleml: namespace)

all new SWRL elements (from swrlx: namespace,
e.g., swrlx:builtin)

Does not support arbitrary embedded
OWL constructs

OWL Ontologies are required to be external

Ontologies used as basis for rule
building blocks

Tuesday, May 19, 2015 24

Rule¥ISor SWRL Rule Editor

RuleVISor GUI

FEIEIE A EE R Editing Ruleset: C:IChrisVIS'SAWAIScenariothasSupphLineRules.swrix

5 CAChrisISISAMAS cenariotl] 2

@[] has Supply Line
@ [isSuppliable
2 =) isSuppliable2
@ =] Head
@ 7] add
©- 7] hsLisSuppliable
% 5 Body
@[] hsl:connects
@ [7] hsl:connects
©- [[7] notEqual
- [7] hslisPassable
@- [[7] hslisSuppliable
@ [lessThanOrEqual
@ [7] underFriendiyControl
@ [isPaszable
@ 7] hasSupplyStation

rhas Supply Line risSuppliahle risSuppliahle2 runderFriendIyCuntml risPassahle rhasSuppIyStatiun |

o Head | Body

sl add { ?depthPlus1, Pdepth, 1xsd:int)) hsl:connects (Proad, fregiont)

hslisSuppliakle (Yregiont, *depthPlus1) hsl:connects (Proad, fregiond)

® . notEqual ¢ Pregiont &edamyURD, Mregion2ixsdanylIRD Y
atomie : hsliisPassahle (Yroad, truedxsd:boalean))
hslisSuppliable {?region?, ?depth)

lessThanOrEqual | ?depth, 200:sd:int))

form

Hame |i58uppliablez

ad |G| "] "s | %] [0]

— Ontology Tree
Q@ e|e hitpihveeen vistology.
@ ns MNamespaces

@ E] Classes
hsl:BupplyEtatio

hel EnenyF orce
hsl:Road
hsl:Unit
h=l:Region
hsl_anondds
hslForce
hslFriendlyFore
roperies
hslisSuppliahle
hslinReqion
hslisPassable
hsl:underFriend
helhasSupplys
hsl:memberOf
hsl.connects

PPPPPPIO

add v | |term1 |‘?depthPIus1 |P|var v||term2 |‘?depth

R -

B EEIR

}Pﬁlml datavaluedProperty v||hsl:isSuppli.al:ule subject |‘?region'1 FdepthPlus1
A

domain |hsI:Region b =ed:int

IR ENE

|indi\riduaIPmpert5t "’"hsl:connecis subject object |‘?region1

domain | hzl:Raad range | hsl:Region ™ |

|indi\riduaIPmperty "’"hsl:connecis subject |‘?mad |P|var || object |‘?region2

domain | hsl:Road range | hsl:Region ™ |

| notEqual - | |term1 ani I-| lit - || term2 anZ I'| it w || w=d:anylIR]

| datavaluedFropery ||hs|:isPassabIe subject - | @Pl lit - || xsd:boolean

A i - | Akl - |

Supply Logistics Rule Set

<rule rlab="has Supply Line">
<body>
<hsl:inRegion sub="?unit"
<hsl:isSuppliable sub="?region"
</body>
<head>
<hsl:hasSupplyLine
</head>
</rule>

<rule rlab="isSuppliable">
<body>
<hsl:hasSupplyStation

</body>
<head>
<hsl:isSuppliable sub="?region"
</head>
</rule>

<rule rlab="isSuppliable2">
<body>
<hsl:connects sub="2road"
<hsl:connects sub="?road"
<swrlb:notEqual
argl="?regionl"
arg2="?region2"/>
<hsl:isPassable sub=""?road"
<hsl:isSuppliable sub="?region2"

sub="?unit"

sub="?region"
<hsl:underFriendlyControl sub="?region"

data="?region"/>
data="true"/>

data="true"/>

data="true"/>
data="true"/>

data="true"/>

data="?regionl"/>
data="?region2"/>

data="true"/>
data="true"/>

<rule rlab="underFriendlyControl">
<body>
<hsl:inRegion
<hsl:memberOf
<hsl:FriendlyForce ind="?force"/>
</body>
<head>
<hsl:underFriendlyControl sub="7?region"
</head>
</rule>

data="?region"/>
data="?force"/>

sub="?unit"
sub="2unit"

data="true"/>

<rule rlab="isPassable">
<body>
<hsl:connects

sub="72road" data="?regionA"/>

<hsl:connects sub=""2road" data="?regionB"/>
<swrlb:notEqual
argl="?regionA"
arg2="?regionB" />
<hsl:underFriendlyControl sub="?regionA"
<hsl:underFriendlyControl sub="?regionB"
</body>
<head>
<hsl:isPassable
</head>

</rule>

sub="?road" data="true"/>

<rule rlab="hasSupplyStation">
<body>
<hsl:inRegion

sub="2X" data="?region"/>

data="?forcel"/>
data="?force2"/>

Tuesday, May 19, 2015

</body> <hsl:SupplyStation ind="?2X"/>
<head> </body>
<hsl:isSuppliable sub="?regionl" data="true"/> <head>
</head> <hsl:hasSupplyStation sub="?region" data="true"/>
</rule> </head>
</rule>

26

BaseVISor Rule Engine

* Forward chaining, Rete-based rule engine
» Native support for RDF triples
e Support for recursive What-If scenarios

» Support for uncertainty propagation using
Bayesian networks

* High performance
— Next slide compares BaseVISor with Jess
* Implemented in Java

Tuesday, May 19, 2015

27

g
0
L]
o~
-]
-
-
£
c
-
o
£
|
—_

160000 156000
Munber of ground facts

Figure 5. BaseVISor vs. Jess performance.

ituation MonitorlD=50

File Help

Standing Relation:

hasSupphd_ine

-

[v] Supply Lines of Units [v] Passable Routes [v| Suppliable Regions |||

Next b |

ID E3 Time 2004-06-08 18:30:19.06 Source S0:sensori

Current Event

Rule Firing

107
A n q
Relevant Relation Diagram & _
—| T Ja
BS 11 G g e
& & g
BT I i :
I -] PR b oo
hasSupplyLine i I o ’
- e 41 : i F-" =1,
Route3 True S O /". = - :_
Route4 0y T g ¢ Aalb) 4k
> 2o = 1 ‘ iy
= rd ™
RegionA isSuphiiable PAE RS T) e<s :
RegionC ! l
ReqgionD . 8@1 Ty S 3 / -
REgiDnH Ab D g 004 DD a DD)
Ohject ID (=1
Ohject Tvpe FriendlyForce
Last Event E2
Time 2004-06-08T17:30:19.062
Relevant Rel Aftribute Value Units Certainty
Relation) Probability Chject X | Faosgition: 180.0 point 1.0
hagSupplline 1.0 B35 Position'y’ 210.0 point 1.0 -
hasSupplyLine 1.0 BY Velogity 0.0 mph 1.0
hasSupplyLine 1.0 B8 elocityt 0.0 mph 1.0
hasSupplyline 1.0 B4
isPassable 1.0 Route3 i = e
isPassable 1.0 Routed True E3 true
isPassable 1.0 Routes True E3 true
i=Sunnliahle 10 Eaninnd Tre E3 tre ik
&~
= Situation Object Table Select: | All Objects ¥
Ohject Attribute value Units [cerainty | Event | Date Time [
EI RegionG Type Region E1 2004-06-08 16:30:19.06 |A
=—l||RegionH Type Region E1 2004-06-08 16:30019.06
—|Regionl Type Region E1 2004-06-08 16:30:19.06
=| RegionJ Type Region E1 2004-06-08 16:30:19.06
= Regionk Type Region E1 2004-06-08 16:30:19.06
=| RegionL Type Region E1 2004-06-08 16:30:19.06
= Regionh Type Region E1 2004-06-08 16:30:19.06
= Raoute1 Type Road E1 2004-06-08 16:30:19.06 |
—|Route? Type Road E1 2004-06-08 16:30:19.06 -

SAWA Accomplishments

SAWA 1is a general purpose assistant for situation awareness:

monitors the evolution of relevant higher-order relations within a
situation.

supports formal reasoning techniques for level-2 fusion.

based on the Semantic Web languages OWL and SWRL.

performs relevance reasoning.

The domain ontology and rules are constructed and checked using an
ontology editor, rule editor and consistency checker.

At runtime events are processed to determine relevance and to infer
higher-order relations.

As higher-order relations are detected they are passed to the GUI, which
displays them 1n both tabular and graphical forms.

, May 19, 2015 30

M query capability allows for both ordinary and “what 1f” queries.

ation Awareness

— Formalization

— Situation
Awareness
Assistant

Tuesday, May 19, 2015

Outline

e Self-Awareness

— Functionality

- Software
composition

e Feedback Control

- Models
- Stability

31

Self-Awareness

» Self-awareness is one part of cognition in
general:

- System Is aware of its own capabilities and can
reflect on its own behavior

- System can modify its behavior to improve its
performance

* Application domains

- Radio communication (waveforms)
— Data link layer communication
- Defending against denial of service attacks

Tuesday, May 19, 2015

32

Ordinary Software

* Local information is stored in a data model that does
NOT have high expressivity and machine
processable semantics

— Scalar variables and some simple structures can
be exchanged using XML or JSON.

— The capabilities and structure of a component
cannot be exchanged.

 Messages between communication nodes are limited
to the structure defined by the protocol

- Messages in XML or JSON must be fully explicit

Tuesday, May 19, 2015 33

Cognitive Software

 Self-awareness enables

— Full access to all processing variables (via
reflection)

- Inference can be used to reduce the
communication overhead significantly (via
ontology and rules)

- Full access to all component capabilities and
structure (via ontology and rules)

- Dynamic reconfigurability (using a library of
annotated modules)

* These were first demonstrated in joint work with
my colleagues

Tuesday, May 19, 2015

34

Self-Awareness Demonstration

» Generation of Waveforms from Descriptions (L. Lechowicz,
Ph.D. thesis)

* Objective: Verify that dynamic Ontology-based radio
reconfigurability is feasible

» Transfer of knowledge (description of BPSK31, QPSK31,
RTTY waveforms)

» Transferred knowledge integrated in the local knowledge base

A waveform described in OWL/Rules constructed from its
description

* Finite state machine built from the ontological description

e A complex software module composed from simpler
software modules dynamically

Tuesday, May 19, 2015 35

Colimits

* The colimit of a
commutative diagram of
module morphisms (for
example, X, Y and Z In
the figure) is the module
P in the figure.

* This example is a
pushout. An actual
system has a much
larger number of
modules.

Tuesday, May 19, 2015 37

ituation Awareness

— Formalization

— Situation
Awareness
Assistant

Tuesday, May 19, 2015

Outline

e Self-Awareness

- Functionality

- Software
composition

e Feedback Control

— Models
- Stability

38

Feedback Control

» The basic function of the software system is regarded
as a Plant to be controlled.

* The behavior of the Plant and the Environment is
modeled dynamic system.

 Measurable inputs to the Plant are identified and split
iInto control inputs and disturbances.

— Control inputs are used for controlling the behavior
of the Plant, while

— Disturbances alter the behavior of the Plant in an
unpredictable way.

Tuesday, May 19, 2015

39

dback Control

ystem is added for changing the
ol inputs to the Plant, called the
m.

er subsystem can be added for computing
feedback, called the Quality of Service (QoS)
subsystem.

- This feedback is used by the Controller to
compute control inputs.

Tuesday, May 19, 2015 40

dback Control

ystem is added for changing the
ol inputs to the Plant, called the
m.

er subsystem can be added for computing
feedback, called the Quality of Service (QoS)
subsystem.

- This feedback is used by the Controller to
compute control inputs.

Tuesday, May 19, 2015 41

Feedback Control Models

e _,,/l Environment Environment Environment
®)

."
| !
\.__|Controller | @ _| pjnt

T — e

o= ()

L Controller L Controller
- e

(a)

_ Environment _ Environment
))

| Controller QoS | QoS %—Contmller ‘ QoS | QoS

i ' |
o K
Controller | “~_.! Model Controller | - Model

designer estimator i - selector selector |
A A

Controller Model
database database

Self-Controlling Software Model

@ Feedback loop)
- Environment
C o
!
Controller Plant QoS iy
/ 5 L) B
Goal F #. Adaptation
i loop
Controller Evaluator|__ i o
designer ;'
§ w Reconfiguration :
| ' loop |
e === “JReconfigurer f--—--——--—-—- !

Information transfer ——=—
ﬁ \ Reconfiguration e

Specification Component
database database

Self-Controlling Software Model
* Feedback loop

- The Controller sets parameters to the Plant
pbased upon goal and feedback received from
the Quality-of-Service subsystem.

* Adaptation loop

- The Evaluator evaluates the behavior and
performance to determine whether the model
of the Plant is appropriate, and

— adapts the model,

— which in turn triggers a change in the control
law.

Tuesday, May 19, 2015

Self=Controlling Software Model (SCSM)

» Reconfiguration loop

- Relatively costly action.

- Performed by the Reconfigurer on request of the
Evaluator.

- Reconfiguration can involve structural changes in
the Plant model, Quality-of-Service, Evaluator,
Controller, Controller Designer, goal, or even the
Plant.

- The Reconfigurer uses

» Specification Database
 Component Database

Tuesday, May 19, 2015 45

olling Software Model

ase

ecifications

m requirement
igh-level system goal

 Component Database
- Modules used for assembling the system
* Module composition

- Based on the category theory notion of colimit
- Requires checking commutativity of the morphisms
- Requires formal proof of correctness of system requirement

Tuesday, May 19, 2015 46

Stability

s modeled as a discrete event system

or so notions of stability for DES,

e sense of Lyapunov
— asymptotic stability

— asymptotic stability in the large

— exponential stability

— exponential stability in the large
— stability in the sense of Lagrange
— uniform boundedness

— uniform ultimate boundedness
Tuesday, May 19, 2015

47

Stability

» Sufficient conditions for stability use a discrete analog of
Lyapunov functions.

— Difficult to find a Lyapunov function for complex
dynamical systems

-~ Not even possible, if the software system is too complex
to have a closed-form mathematical formulation

« However, one can often find a bound

- Bound is a form of worst case analysis

- Bound is much simpler and tractable

- Efficiency will depend on quality of the bound
— Continual evaluation is required

- The SCSM is designed for this purpose

Tuesday, May 19, 2015 48

her Issues

» Chattering
» Scheduling

ul e« Proactive
reconfiguration

. 'Autonomy » Efficiency
* Generality

Tuesday, May 19, 2015

49

nowledgements

ons
lons

_ /areness Publications
e Wireless Communication Publications
¢ Website: www.ccs.neu.edu/home/kenb

Tuesday, May 19, 2015

50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

