Hypertext Linkage Analysis System and Method

Kenneth Baclawski, Waltham, MA

Abstract

A distributed computer database system including one or more front end computers,
one or more home nodes, one or more index nodes and one or more object nodes
interconnected by a network into a search engine for retrieval of hypertext documents.
A query is a combination of one or more elementary queries. An elementary query
is an index query, a link query or an object query. An index query is an object
in the same format as the objects to be retrieved. A link query is an object in
the same format as an index query except that it contains a specification for one
incoming or outgoing hypertext link. An object query is a request for information
about one object that is indexed by the search engine. A query consists of a series
of elementary queries. An elementary query can make use of information retrieved
by other elementary queries. A query from a user is transmitted to one of the front
end computers which forwards the query to one of the computer nodes, termed the
home node, of the search engine. The home node parses the query into elementary
queries and schedules the elementary queries for processing. To process an index
query or link query, the home node extracts features from the index query or link
query and hashes these features. Each hashed feature is transmitted to one index
node on the network. Each index node on the network which receives a hashed
feature uses the hashed feature of the index query or link query to perform a search
on its respective partition of the database. The results of the searches of the local
databases are gathered by the home node. To process an object query, the home
node transmits the object identifier contained in the object query to the object node
on the network containing the information associated with the object. The object
node which receives the object query uses the object identifier to perform a search
on its respective partition of the database. The results of the search of the local
database is transmitted to the home node. The home node processes the results of
each elementary query according to the specifications in the query. The processing
may include the evaluation of additional elementary queries. When all processing is
completed by the home node, the results are returned to the front end node which
formats the results for presentation to the user.

References

1]

[10]

[11]

[12]

L. Aiello, J. Doyle, and S. Shapiro, editors. Proc. Fifth Intern. Conf. on Princi-
ples of Knowledge Representation and Reasoning. Morgan Kaufman Publishers,
San Mateo, CA, 1996.

G. Arocena, A. Mendelzon, and G. Mihaila. Applications of a web query lan-
guage. In Proc. 6" Intern. World Wide Web Conf., 1997.

K. Baclawski. Distributed computer database system and method, December
1997. United States Patent No. 5,694,593. Assigned to Northeastern University,
Boston, MA.

S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Ra-
jagopalan. Automatic resource list compilation by analyzing hyperlink structure
and associated text. In Proc. 7" Intern. World Wide Web Conf., 1998.

A. Del Bimbo, editor. The Ninth International Conference on Image Analysis
and Processing, volume 1311. Springer, September 1997.

N. Fridman. Knowledge Representation for Intelligent Information Retrieval in
Ezxperimental Sciences. PhD thesis, College of Computer Science, Northeastern
University, Boston, MA, 1997.

D. Gibson, J. Kleinberg, and P. Raghavan. Inferring Web communities from link
topology. In Proc. 9" ACM Conf. on Hypertezt and Hypermedia, 1998.

R. Jain. Content-centric computing in visual systems. In The Ninth International
Conference on Image Analysis and Processing, Volume II, pages 1-13, September
1997.

J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc.
ACM-SIAM Sympos. on Discrete Algorithms, 1998.

Y. Ohta. Knowledge-Based Interpretation of Outdoor Natural Color Scenes. Pit-
man, Boston, MA, 1985.

P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable
structures from the web. In CHI’96 Proceedings: Conference on Human Factors
in Computing Systems: Common Ground, pages 118-125, Vancouver, BC, 1996.

E. Rivlin, R. Botafogo, and B. Schneiderman. Navigating in hyperspace: De-
signing a structure-based toolbox. Comm. of the ACM, 37(2):87-96, February
1994.

[13] G. Salton. Automatic Text Processing. Addison-Wesley, Reading, MA, 1989.

[14] G. Salton, J. Allen, and C. Buckley. Automatic structuring and retrieval of large
text files. Comm. ACM, 37(2):97-108, February 1994.

[15] E. Spertus. ParaSite: Mining structural information on the web. In Proc. 6"
Intern. World Wide Web Conf., 1997.

[16] A. Tversky. Features of similarity. Psychological review, 84(4):327-352, July
1977.

[17] R. Weiss, B. Velez, M. Sheldon, C. Nemprempre, P. Szilagyi, and C. Giffor.
HyPursuit: A hierarchical network search engine that exploits content-link hy-
pertext clustering. In Proc. Seventh ACM Conf. on Hypertext, pages 180-193,
1996.

[18] H. White and K. McCain. Bibliometrics. Ann. Rev. Info. Sci. and Technology,
pages 119-186, 19809.

1 Field of the Invention

The invention relates to computer database systems and more specifically to dis-
tributed computer database systems.

2 Background of the Invention

The World Wide Web (WWW) is much more than just a collection of Web pages.
Each page contains references to other pages. Such references are called links, and
one of the most important features of a Web browser is the ability to follow a link and
display the page that is being referenced. A collection of documents linked together
in this way is called a hypertext.

The link structure of a hypertext is a rich source of knowledge about the content
of the hypertext. In the field of bibliometrics, links in the form of citations have
been used for understanding documents by using citation analysis techniques. The
link structure of the WWW is now being exploited as a means of categorization and
knowledge extraction. This is being done in two ways:

1. General hypertext query languages.

2. Cluster analysis algorithms.

A Web query language, such as WebSQL, is a query language for extracting infor-
mation from the Web, based on hypertext structure as well as content. For example,
one might be interested in a job opportunity for a librarian. One can query the Web
using WebSQL to find all pages containing the keywords “employment” or “job op-
portunities” and then list all the pages referenced by such a page and containing the
keyword “librarian.”

Cluster analysis algorithms make use of Web query languages to find specific
patterns in the link structure of the WWW. The most common cluster analysis pattern
is the authority/hub pattern. To compute this pattern, one first specifies a topic area
using one or more keywords. For example, one might be interested in the topic “Y2K.”
A page is potentially relevant if it contains one or more keywords of the topic. An
authority page for a topic is a page that is referenced by a large number of pages
potentially relevant to the topic. Note that an authority page need not contain any of
the keywords of the topic. Authority is conferred on it by virtue of being referenced
frequently by potentially relevant pages. A hub page for a topic is one that references a
large number of pages potentially relevant to the topic. An authority page for “Y2K”
is one that is highly referenced by pages that mention “Y2K.” If one is interested in
the Y2K problem, then it seems natural to look first at the authority pages.

Web query languages in general, and Web cluster analysis algorithms in particular,
are limited in an important respect. They can only evaluate outgoing links, not
incoming links. This is due to the way that Web links are defined. A link within one
page specifies the link to which it linked, not the other way around. For example,
suppose that one was interested in all the pages that refer to one’s own home page.
WebSQL cannot answer such a query.

The WWW is not just a hypertext. Pages can contain images, sound and video
streams, and the structure of the WWW is continually changing. For these reasons,
the WWW is called a hypermedia environment. Web resources are located by a Uni-
versal Resource Locator (URL) which uniquely identifies the resource. More generally,
a hypermedia environment consists of information objects that are uniquely identified
by an object identifier (OID) and that can contain links to other information objects.
A hypermedia environment is also called an object database.

To assist in finding information in an object database, special search structures
are employed called indexes. Large databases require correspondingly large index
structures to maintain pointers to the stored data. Such an index structure can be
larger than the database itself. Current technology requires a separate index for each
attribute or feature. This technology can be extended to allow for indexing a small
number of attributes or features in a single index structure, but this technology does
not function well when there are hundreds or thousands of attributes. Furthermore,
there is considerable overhead associated with maintaining an index structure. This
limits the number of attributes or features that can be indexed. Current systems are

unable to scale up to support databases for which there are: many object types; mil-
lions of features; queries that involve many object types and features simultaneously;
and new object types and features being continually added.

3 Summary of the Invention

The present invention is an indexing and search engine that supports arbitrary query
languages for extraction of information based on the content of the information objects
in the database as well as the links between information objects. Unlike Web query
languages such as WebSQL, the present invention fully supports queries involving
either outgoing or incoming links. For example, the present invention can determine
all the pages that refer to one’s own home page.

Indexing of an object database requires an ontology. An ontology consists of a
series of specifications that define the nature of being and the kinds of existence for
the particular domain represented by the database. Most ontologies are very limited.
For a relational database, the ontology is specified by its database schema which
consists of the attributes of the records along with the types of the attribute values.
Ontologies in general may include some or all of the following: vocabulary terms
and term recognizers, conceptual categories, category classifications, relationships
between conceptual categories, weight information that determines the strength of a
relationship, syntactic forms for expressing these relationships, and logical inferences
for relationships. In particular, an ontology specifies the features that information
objects can possess as well as how to extract features from information objects. Each
feature of an information object may have an associated weight, representing the
strength of the feature.

Hypertext query languages and algorithms that make use of them, such as cluster
algorithms, depend on the retrieval of three kinds of information in an object database:

1. Retrieval of objects relevant to a query. This is the traditional information
retrieval problem.

2. Retrieval of link information relevant to a query.

3. Retrieval of all link information for a specific object. This includes both incom-
ing and outgoing links.

A general query is composed of several elementary queries corresponding to the three
kinds of retrieval described above:

index query An elementary query for retrieval of relevant objects.

link query An elementary query for retrieval of relevant link information.

object query An elementary query for retrieval of link information for one object.

The invention relates to a distributed computer database system which includes
one or more front end computers, one or more home nodes, one or more index nodes
and one or more object nodes interconnected by a network. A single computer pro-
cessor can fulfill the functionality of one or more front end, home, index and object
nodes. The combination of computer nodes interconnected by a network operates as
a search engine.

A user wishing to query the database, transmits the query to one of the front end
nodes which in turn forwards the query to one of the home nodes of the network. The
node receiving the query, termed the home node of this query, parses the query into
elementary queries.

For an index or link query, the home node extracts the features of the received
query and then encodes the features using a hash function. A portion of each hashed
feature is used by the home node as an addressing index by which the home node
transmits the hashed index or link query feature to an index node on the network.
For an object query, the home node uses a portion of the OID as an addressing index
by which the home node transmits the object query to an object node on the network.

Each index node on the network which receives a hashed index or link query feature
uses the hashed index or link query feature to perform a search on its respective
database. Index nodes finding data corresponding to a hashed index query feature
return the set of OIDs of the information objects possessing this feature. Index nodes
finding data corresponding to a hashed link query feature return the set of pairs of
OIDs of the links between information objects which possess this feature.

Each object node on the network which receives an object query uses the OID
contained in the object query to perform a search on its respective database. The
object node returns the information associated with the OID as specified in the object
query. Such information may include any or all of the following: the location of the
object whose OID is contained in the object query, the set of OIDs that represent
objects referenced by the object whose OID is contained in the object query, the set
of OIDs that represent objects that reference the object whose OID is contained in
the object query, and other auxiliary information associated with the object whose
OID is contained in the object query.

The OIDs or pairs of OIDs are then gathered by the home node. For an index
or link query, a similarity function is computed based on the features that are in
common with the index or link query. The similarity function is used to rank the
objects or links between objects. The objects or links between objects that have the
largest similarity value are used in subsequent processing of the query. For an object
query, the information returned by the object node is used in subsequent processing
of the query.

The subsequent processing of the query by the home node may involve the con-
struction of new elementary queries using the information returned from earlier el-
ementary queries. Processing continues until no additional elementary queries are
needed. The home node then performs any remaining processing required by the
query, and the results are transmitted to the front-end node.

The front end node formats the response to the user based on the OIDs and any
other information transmitted by the home node. For example, if the front end node
is a World Wide Web server, then the front end node constructs a page in HTML
format containing a reference to a URL and auxiliary information for each object.
The front end transmits the formatted response to the user.

4 Description of the Drawings

This invention is pointed out with particularity in the appended claims. The above
and further advantages of the invention may be better understood by referring to the
following description taken in conjunction with the accompanying drawing, in which:

FIG. 1 is a block diagram of an overview of an embodiment of the distributed com-
puter database system of the invention;

FIG. 2 is an overview of the steps used by the embodiment of the distributed com-
puter database system to respond to a query;

FIG. 3 is an overview of the steps used by the embodiment of the distributed com-
puter database system to store data associated with a hypertext document.

FIG. 4 specifies the formats of the messages transmitted between the nodes of the
distributed computer database system.

The remaining diagrams are block diagrams of the modules that perform the tasks
of the invention within each node.

5 Detailed Description of the Preferred Embodi-
ment

Referring to FIG. 1, in broad overview, one embodiment of a distributed computer
database system of the invention includes a user computer which is in communication
with a front end computer through a network. The front end computer, which may
also be the user computer, is in turn in communication with a search engine which

includes one or more computer nodes interconnected by a local area network. The in-
dividual computer nodes may include local disks, or may, alternatively or additionally,
obtain data from a network disk server.

The computer nodes of the search engine may be of several types, including home
nodes, index nodes and object nodes. The nodes of the search engine need not
represent distinct computers. In one embodiment, the search engine consists of a
single computer which takes on the roles of all home nodes, index nodes and object
nodes. In another embodiment, the search engine consists of separate computers for
each home node, index node and object node. Those skilled in the art will realize
many variations are possible which will still be within the scope and spirit of the
present invention.

Considering the processing of a query first, and referring also to FIG. 2, in one
embodiment when a user transmits (Step 201) a query from the user computer, the
front end computer receives the query. The front end computer is responsible for
establishing the connection with the user computer to enable the user to transmit a
query and to receive a response in an appropriate format. The front end computer
is also responsible for any authentication and administrative functionality. In one
embodiment, the front end computer is a World Wide Web server communicating
with the user computer using the HT'TP protocol.

After verifying that the query is acceptable, the front end computer performs any
reformatting necessary to make the query compatible with the requirements of the
search engine. The front end computer then transmits the query to one of the home
nodes of the search engine (Step 202), which is then defined as the home node of the
search engine for that query.

The home node parses the query into a series of elementary queries. Elementary
queries are of three kinds: index queries, link queries and object queries. Each ele-
mentary query consists of a command that determines what action the elementary
query is to perform and additional information that depends on the kind of elementary
query. An object query contains an OID, and the other two kinds of elementary query
contain an information object conforming to the ontology of the object database. A
link query contains exactly one link to an unspecified information object. An index
query does not contain any unspecified links to other information objects.

The purpose of an object query is to obtain information about the object identified
by the OID of the object query. The purpose of an index query is to search for
information objects that contain information similar to the information in the index
query. The purpose of a link query is to search for pairs of information objects such
that one object contains information similar to the information in the link query and
such that this information is associated with a link to the other information object.

The home node extracts information from each elementary query depending on
what kind of elementary query it is. The home node extracts the OID from an object

query. The home node extracts features from an index query or a link query according
to the ontology. Note that an object either possesses a feature or it does not. This
property is distinct from the value associated with a feature when an object possesses
the feature.

Features are extracted from structured elementary queries or documents by pars-
ing the document to produce a data structure, then dividing this data structure into
(possibly overlapping) substructures called fragments. Fragments of an elementary
query feature are used to find matching fragments in the database, so they are also
called probes.

Features are extracted from unstructured elementary queries or documents by
using feature extraction algorithms. Feature extraction produces a data structure
consisting of a collection of inter-related domain objects. The data structure is divided
into (possibly overlapping) substructures, as in the case of a structured document,
and these substructures are the fragments of the unstructured document.

A large variety of feature extraction algorithms have been developed for media
such as sound, images and video streams, such as edge detection, segmentation and
object classification algorithms. Fourier and Wavelet transformations as well as many
filtering algorithms are also used to extract features. Each feature can have one or
more values associated with components of the data structure that represents the
feature. In the simplest case the data structure consists of a single component with
an associated value. In this case the feature represents one attribute of the object.
More complex features will contain several inter-related components, each of which
may have attribute values. For example, components of a feature can be contained
within other components of the feature or be adjacent to other components.

The data structures that represent the features conform to a data model specified
by the ontology. The data model determines the kinds of components and attribute
values that are allowed. Each fragment of each feature has an associated weight,
representing the strength of the feature.

If a fragment occurs very commonly in the database, then it does not contribute
to the purpose of the search engine; namely, distinguishing those objects that are
similar to a particular query. An example is the brightness of an image. Such a
fragment will be partitioned into a collection of contiguous, non-overlapping ranges
of the value associated with the fragment rather than the fragment itself. Each range
of the value is then regarded as a separate fragment. When the fragments of a query
are extracted, fragments that represent value ranges near, but not including, the value
of the fragment in the query are also included as fragments of the query, but with
smaller strength than the fragment representing a value range that includes the value
of the fragment in the query. The value ranges for a particular fragment can either be
specified explicitly in the ontology, or they can be constructed dynamically as objects
are indexed by the search engine.

The home node encodes each fragment of the query by using a predefined hashing
function. Data in the system was previously stored locally on the various index nodes
using this hashing function to generate an index to the data in the local database.
In particular, if a fragment includes a link then it is hashed and stored as a link
fragment, while if a fragment does not include a link then it is hashed and stored as
an index fragment. Thus, the use of the same hashing function to generate an index
for data storage and to generate hashed probes for a query assures that

1. data is distributed uniformly over the index nodes of the search engine during
the storing of data and

2. the probes are scattered uniformly over the index nodes during the processing
of a query.

In one embodiment, the hash value resulting from the use of the hashing function
has a first portion which serves to identify the index node to which the data is to be
sent to be stored or to which a query feature is to be sent as a probe and a second
portion which is the local index value which is used to determine where data is to be
stored at or retrieved from the index node. Thus, in terms of an index or link query,
the hashed query features are distributed (Step 203) as probes to certain index nodes
of the search engine, as determined by the first portion of the hash value.

In one embodiment, the OID of an object query has a first portion which serves
to identify the object node to which the data is to be sent to be stored or to which
an OID is to be sent as a probe and a second portion which is the local index value
which is used to determine where data is to be stored at or retrieved from the object
node (Step 203).

Index nodes whose probes match the index features by which the data was initially
stored on that index node respond to the elementary query by transmitting (Step 204)
the OIDs matching the index terms of the requested information to the home node.
Thus all matches between the hashed probes and the local hash table of index terms
are returned or gathered to the home node which initially transmitted the elementary
query.

Index nodes whose probes match the link features by which the data was initially
stored on that index node respond to the elementary query by transmitting (Step 204)
a set of pairs of OIDs matching the link terms of the requested information to the
home node. Each pair of OIDs represents a link from the first OID in the pair to the
second OID in the pair. Thus all matches between the hashed probes and the local
hash table of link terms are returned or gathered to the home node which initially
transmitted the elementary query.

Object nodes whose probes match the OIDs by which the data was initially stored
on that object node respond to the object query by transmitting (Step 204) informa-
tion about the object and a set of OIDs associated with OID of the requested object

10

query to the home node. Each transmitted OID represents an object for which there
is an incoming or outgoing link with the OID of the object query.

The home node then processes the results of each elementary query. The action is
determined by the command contained in the elementary query. For an object query,
the command may require selecting a subset of the OIDs according to criteria such
as the directionality or type of the link.

For an index or link query, the command may require that the information re-
turned to the home node be ranked and selected according to their relevance. This
determination of relevance is made by the home node by comparing the degree of
similarity between the query and the objects whose OIDs were returned. In one
embodiment the measure of similarity between the query and the object is a cosine
measure and is given by the expression COS(v,w), where the vector v denotes the
query and the vector w denotes the object. These vectors are in a space in which
each feature represents one dimension of the space.

Another commonly used measure of similarity between two objects is a distance
function in the same space mentioned above for the cosine measure. However, there
is convincing evidence that human similarity does not satisfy the axioms of a distance
function. The model that currently seems to be the most successful approach is the
Feature Contrast Model of Tversky. In this model, the similarity between a query
and an object is determined by three terms:

1. The features that are common to the query and the object.
2. The features of the query that are not features of the object.
3. The features of the object that are not features of the query.

The first term contributes a positive number to the similarity value, while the second
and third terms have negative contributions. In addition the second and third terms
are multiplied by predefined constants such that a feature in the second and third set
has less effect on the similarity than one in the first set.

In one embodiment the measure of similarity between the query and the object
is a measure determined by two predefined constants that are used to multiply the
first two terms occurring in the Feature Contrast Model. In this embodiment, the
predefined constant for the third term is assumed to be zero. Since the third term is
the least important, it has only a small effect on the ranking of the objects that are
retrieved.

In one embodiment the N objects with the highest similarity are returned. In
another embodiment all objects which generate similarity values greater than a pre-
determined value are considered sufficiently similar to the query to be returned to the
user as relevant information.

11

Once the similarity is determined, the home node orders the objects according to
their degree of similarity and then determines a list of the most relevant objects.

The result of an elementary query depends on the kind of elementary query. For
an index query the result is a list of OIDs. For a link query the result is a list of pairs
of OIDs. For an object query the result is object information, possibly including a
list of OIDs.

The result list of an elementary query may be used in two ways depending on how
the elementary query was related to other elementary queries when the original query
was parsed. The result may be used for subsequent processing of other elementary
queries, or it may be used as part of the information to be returned, or both. If it
is used for subsequent processing of other elementary queries, these other elementary
queries are processed as described above.

When all elementary queries have been processed, the results are collected for
return to the user. In one embodiment the returned information is transmitted to the
front end (Step 205) computer which formats the response appropriately and trans-
mits the response to the user (Step 206). In another embodiment the information
to be returned is transmitted directly to the user computer by way of the network
without the intervention of the front end computer.

Considering next the indexing of an object, and referring also to FIG. 3, in one
embodiment when a user transmits (Step 301) an object from the user computer,
the front end computer receives the object. The front end computer is responsible
for establishing the connection with the user computer to enable the user to transmit
an object. In another embodiment the front end computer automatically examines
objects in its environment for indexing by the search engine without interaction with
a user.

The front end selects a home node and transmits the object to the selected home
node (Step 302). In one embodiment, the selection of a home node is done randomly
so as to evenly distribute the workload among the home nodes. The home node
assigns a unique OID to the object, then processes the object as discussed above in
the case of elementary queries (Step 303), except that data associated with the object
is stored in the index nodes and an object node.

Considering next the message formats used in the preferred embodiment, refer to
FIG. 4. The Index Query Message has four fields: Header, Elementary Query Iden-
tifier (EQID), Hashed Query Fragment (HQF) and Value. The Header field specifies
that this message is an Index Query Message and also specifies the destination index
node. The destination index node is determined by the first portion of the hashed
query fragment. The EQID field contains an elementary query type specifier and an
elementary query identifier. The HQF field contains a fragment type specifier and the
second portion of the hashed query fragment produced by the Hashing Module. The
Value field contains an optional value associated with the fragment. The fragment

12

type specifier determines whether the Index Query Message contains a Value field,
and if the Index Query Message does contain a Value field then the fragment type
specifier determines the size of the Value field.

The Index Query Response Message contains four fields: Header, EQID, Object
Identifier (OID) and Weight. The Header field specifies that this message is an Index
Query Response Message and also specifies the destination home node. The destina-
tion home node is the home node from which the corresponding Index Query Message
was received. The EQID field contains an elementary query type specifier and an el-
ementary query identifier. The OID field contains an object type specifier and an
object identifier. The Weight field contains an optional weight associated with the
object. The object type specifier determines whether the Index Query Response Mes-
sage contains a Weight field, and if the Index Query Response Message does contain
a Weight field then the object type specifier determines the size of the field.

The Link Query Message has four fields: Header, EQID, HQF and Value. The
Header field specifies that this message is a Link Query Message and also specifies
the destination index node. The destination index node is determined by the first
portion of the hashed query fragment. The EQID field contains an elementary query
type specifier and an elementary query identifier. The HQF field contains a fragment
type specifier and the second portion of the hashed query fragment produced by the
Hashing Module. The Value field contains an optional value associated with the
fragment. The fragment type specifier determines whether the Link Query Message
contains a Value field, and if the Link Query Message does contain a Value field then
the fragment type specifier determines the size of the Value field.

The Link Query Response Message contains five fields: Header, EQID, OID1,
OID2 and Weight. The Header field specifies that this message is an Link Query
Response Message and also specifies the destination home node. The destination
home node is the home node from which the corresponding Link Query Message
was received. The EQID field contains an elementary query type specifier and an
elementary query identifier. The two OID fields contain an object type specifier and
an object identifier. The OID1 field contains the OID of the originating (source) object
of the link. The OID2 field contains the OID of the destination (target) object of the
link. The Weight field contains an optional weight associated with the object. The
object type specifier of OID1 determines whether the Link Query Response Message
contains a Weight field, and if the Link Query Response Message does contain a
Weight field then the object type specifier determines the size of the field.

The Object Query Message has three fields: Header, EQID and OID. The Header
field specifies that this message is an Object Query Message and also specifies the des-
tination object node. The destination object node is determined by the first portion
of the object identifier. The EQID field contains an elementary query type specifier
and an elementary query identifier. The OID field contains an object type specifier

13

and the second portion of the object identifier.

The Object Query Response Message has three parts: Identifier, Feature and
Auxiliary. The Identifier part has four fields: Header, EQID, OID and Location. The
Header field specifies that this message is an Object Query Response Message and also
specifies the destination home node. The destination home node is the home node
from which the corresponding Object Query Message was received. The EQID field
contains an elementary query type specifier and an elementary query identifier. The
OID field contains an object type specifier and the object identifier. The Location
field contains an optional location specifier such as a URL. The object type specifier
determines whether the Object Query Response Message contains a Location field,
and if the Object Query Response Message does contain a Location field, then the
object type specifier determines the size of the Location field. The Feature part
contains a number of features associated with the object. The Auxiliary part contains
auxiliary information associated with the object. The object type specifier determines
whether the Object Response Message contains an Auxiliary part, and if the Object
Response Message does contain an Auxiliary part, then the object type specifier
determines the size and structure of the Auxiliary part.

The Insert Index Message has four fields: Header, OID, HQF and Value. The
Header field specifies that this message is an Insert Index Message and also specifies
the destination index node. The destination index node is determined by the first
portion of the hashed query fragment. The OID field contains an object type specifier
and the object identifier. The HQF field contains a fragment type specifier and the
second portion of the hashed query fragment produced by the Hashing Module. The
Value field contains an optional value associated with the fragment. The fragment
type specifier determines whether the Query Message contains a Value field, and if the
Query Message does contain a Value field then the fragment type specifier determines
the size of the Value field.

The Insert Link Message has five fields: Header, OID1, OID2, HQF and Value.
The Header field specifies that this message is an Insert Link Message and also specifies
the destination index node. The destination index node is determined by the first
portion of the hashed query fragment. The two OID fields contain an object type
specifier and an object identifier. The HQF field contains a fragment type specifier and
the second portion of the hashed query fragment produced by the Hashing Module.
The Value field contains an optional value associated with the fragment. The fragment
type specifier determines whether the Query Message contains a Value field, and if the
Query Message does contain a Value field then the fragment type specifier determines
the size of the Value field.

The Insert Object Message has three parts: Identifier, Feature and Auxiliary. The
Identifier part has three fields: Header, OID and Location. The Header field specifies
that this message is an Insert Object Message and also specifies the destination object

14

node. The destination object node is determined by the first portion of the object
identifier. The OID field contains an object type specifier and the second portion of
the object identifier. The Location field contains an optional location specifier such
as a URL. The object type specifier determines whether the Insert Object Message
contains a Location field, and if the Insert Object Message does contain a Location
field, then the object type specifier determines the size of the Location field. The
Feature part contains a number of features associated with the object. The Auxil-
iary part contains auxiliary information associated with the object. The object type
specifier determines whether the Insert Object Message contains an Auxiliary part,
and if the Insert Object Message does contain an Auxiliary part, then the object type
specifier determines the size and structure of the Auxiliary part.

Considering next the Communication Module contained in the computer nodes
used in the preferred embodiment, refer to Fig. 5, 6 and 7. The Communication
Module is responsible for transmitting and receiving messages from one node to an-
other. The destination node for a message to be transmitted is specified in the Header
field of each message. When a message is received from another node, the type of
message determines which module will process the message. The message type is
specified in the Header field of each message.

The Communication Module of a home node is also responsible for communication
with the Front End nodes. A Front End node transmits queries and objects to the
home node, and the home node transmits results, such as formatted tables, to the
Front End node.

Considering next the modules contained in the home nodes used in the preferred
embodiment, refer to Fig. 5. The Query Parser parses a query into a query compu-
tation tree. The nodes of the query computation tree are either internal nodes or
leaf nodes. An internal node is a node having one or more child nodes. An internal
node specifies how the results of the child nodes are to be combined. A leaf node is
a node having no children. A leaf node is either a constant value or an elementary
query. Elementary queries are of three kinds: index queries, link queries and object
queries. Each elementary query consists of a command that determines what action
the elementary query is to perform and additional information that depends on the
kind of elementary query. An object query contains an OID, and the other two kinds
of elementary query contain an information object conforming to the ontology of the
object database. A link query contains exactly one link to an unspecified information
object. An index query does not contain any unspecified links to other information
objects. The query computation tree is transferred to the Query Processor.

The Query Processor is responsible for administering the processing of the query.
Upon receiving a query computation tree from the Query Parser, it assigns a query
identifier (QID) to the query, and it assigns an elementary query identifier (EQID)
to each leaf node that specifies an elementary query. Each elementary object query

15

is transmitted to an object node using an Object Query Message. The elementary
index and link queries are transferred to the Feature Extractor. As Query Response
Messages are received, the processing specified in the query computation tree is per-
formed. When the entire query has been computed, the response is formatted and
transmitted to the front end from which the query was received.

The Feature Extractor extracts features from an object or elementary query. Fea-
ture extraction for images is performed by detecting edges, identifying the image
objects, classifying the image objects as domain objects and determining relation-
ships between domain objects. In another embodiment, feature extraction for images
is performed by computing Fourier or wavelet transforms. Each Fourier or wavelet
transform constitutes one extracted feature. The extracted features are transferred
to the Fragmenter. In addition, when features have been extracted from an object,
the features are transferred to the Communication Module in the form of an Insert
Object Message.

The Fragmenter computes the fragments contained in each feature. Each fragment
consists of a bounded set of related components in the feature. In one embodiment,
the fragments of a feature consist of each attribute and each relationship in the data
structure defining the feature. The fragments are transferred to the Hashing Module.

The Hashing Module computes a hash function of a fragment. In one embodiment,
the hash function is the MD4 message digest function. If the fragment is derived
from an elementary index query or an elementary link query, the Hashing Module
transmits an Index Query Message or Link Query Message to the Communication
Module, respectively. If the fragment is derived from an object, then the Hashing
Module transmits an Insert Link Message when the fragment includes a link and
the Hashing Module transmits an Insert Index Message when the fragment does not
include a link.

The Similarity Comparator gathers all the query responses for each elementary
query. For each object or link in the responses, the Similarity Comparator deter-
mines the relevance of each object or link, respectively, returned in the search. This
determination of relevance is made by the home node by comparing the degree of
similarity between the elementary query and the objects or links, respectively, whose
OIDs or pairs of OIDs, respectively, were received. In one embodiment the measure
of similarity between the query and the object is a cosine measure and is given by
the expression COS (v, w), where the vector v denotes the query and the vector w
denotes the object. These vectors are in a space in which each fragment represents
one dimension of the space. The most relevant OIDs or pairs of OIDs, respectively,
are transferred to the Query Processor.

Considering next the modules contained in the index nodes used in the preferred
embodiment, refer to Fig. 6. The Fragment Table receives Index Query Messages,
Index Link Messages, Insert Index Messages and Insert Link Messages. In the case of

16

an Insert Query Message or an Insert Link Message, the Fragment Table retrieves an
entry in the local hash table using the hash value in the HQF field. The type specifier
in the HQF field and the entry in the local hash table are transferred to the Fragment
Comparator. In the case of an Insert Index Message or an Insert Link Message, the
Fragment Table modifies an entry in the local hash table by adding the OID or pair of
OID fields, respectively, and the Value field of the Insert Index Message or the Insert
Link Message, respectively, to the entry in the local hash table.

The Fragment Comparator receives entries from the Fragment Table. A compar-
ison function is determined by the HQF type specifier that was transferred from the
Fragment Table. The comparison function is used to determine the relevance of the
OID and Value fields in the entry that was transferred from the Fragment Table. In
one embodiment, the comparison function determines a similarity weight, and the
OIDs having the highest similarity weight are deemed to be relevant. The relevant
OIDs and their similarity weights are transferred to the Communication Module using
an Index Query Response Message or a Link Query Response Message, depending on
whether the entry received from the Fragment Table is an index entry or link entry,
respectively.

Considering next the module contained in the object nodes used in the preferred
embodiment, refer to Fig. 7. The Object Table receives Object Query Messages and
Insert Object Messages. In the case of an Object Query Message, the Object Table
retrieves an entry in the local table using the object identifier in the OID field of
the Object Query Message. The Object Query Message and the retrieved entry are
transmitted to the Communication Module using an Object Query Response Message.
In the case of an Insert Object Message, the Object Table inserts a new entry in the
local table. If an entry already exists for the specified object identifier, then the
existing entry is replaced. The new or replacement entry contains the information in
the Insert Object Message.

6 Claims

Having shown the preferred embodiment, those skilled in the art will realize many
variations are possible which will still be within the scope and spirit of the claimed
invention. Therefore, it is the intention to limit the invention only as indicated by
the scope of the claims.

What is claimed is:

1. A method for information retrieval using a query language in a distributed
computer database system having a plurality of home nodes and a plurality of
index nodes connected by a network, said method comprising the steps of:

(a) selecting a first one of said plurality of home nodes;

17

(b) parsing, by said selected home node, a query conforming to the said query
language, from a user, to obtain a plurality of elementary queries;

(c) each of said elementary queries being an index query or a link query;

(d) extracting, by said selected home node, a plurality of features from each
elementary query of the said plurality of elementary queries;

(e) hashing, by said selected home node, each said elementary query feature of
said plurality of elementary query features, said hashed elementary query
feature having a first portion and a second portion;

(f) transmitting, by said selected home node, each said hashed elementary
query feature of said plurality of elementary query features to a respective
one of said plurality of index nodes indicated by said first portion of each
said hashed elementary query feature;

(g) using by said index node, said second portion of said respective hashed
elementary query feature to access data according to a local hash table
located on said index node;

(h) returning, by each said index node accessing data according to said respec-
tive hashed index query feature a plurality of object identifiers correspond-
ing to said accessed data to said selected home node; and

(i) returning, by each said index node accessing data according to said re-
spective hashed link query feature a plurality of pairs of object identifiers
corresponding to said accessed data to said selected home node.

2. The method of claim 1 further comprising the step of receiving, at said home
node, said query from said user, prior to the step of parsing said query.

3. The method of claim 2 further comprising the steps of:
(a) determining, by said home node, a measure of similarity between said

accessed data and each said elementary query; and

(b) returning to said user or using for subsequent processing, by said home
node, accessed data having a degree of similarity determined by the said
elementary query.

subsequent to the step of returning said plurality of object identifiers or said
plurality of pairs of object identifiers, according to said respective hashed index
feature or hashed link feature.

4. The method of claim 3 wherein said measure of similarity is determined by a
similarity function based on:

18

(a)
(b)

features possessed by both the said accessed data and the said elementary
query; and

features possessed only by the said elementary query.

5. A method of storing objects or locations of objects in a manner which is con-
ducive to information retrieval using a query language in a distributed computer
database system having a plurality of home nodes and a plurality of index nodes
connected by a network, said method comprising the steps of:

(a)
(b)

selecting a first one of said plurality of home nodes;

extracting, by said selected home node, a plurality of features from an
object submitted by a user;

each of said plurality of features is either an index feature or a link feature;

hashing, by said selected home node, each said object feature of said plu-
rality of object features, said hashed object feature having a first portion
and a second portion;

transmitting, by said selected home node, each said hashed object feature
of said plurality of features to a respective one of said plurality of index
nodes indicated by said first portion of each said hashed object feature;
and

using, by said index node, said second portion of said respective hashed
object feature to store data according to a local hash table located on
said index node, said data consisting of the object identifier of the object
containing the feature and, in addition, if the feature is a link feature, the
object identifier of the object referenced by the link contained in the link
feature.

6. The method of claim 5 further comprising the step of receiving, at said home
node, said object from said user, prior to the step of extracting features from
said object.

7. A distributed computer database system having an information retrieval tool
for handling queries from a user comprising:

(a)
(b)
(c)

a plurality of home nodes; and
a plurality of index nodes;

said plurality of home nodes and said plurality of index nodes connected
by a network.

19

(d)

wherein each said home node, upon receiving a query from a user, parses
the said query to obtain a plurality of elementary queries, each of which is
either an index query or a link query, extracts a plurality of features from
each said elementary query, hashes each said elementary query feature
of said plurality of query features into a hashed elementary query feature
having a first portion and a second portion, and transmits each said hashed
query feature to a respective one of said plurality of index nodes indicated
by said first portion of said hashed elementary query feature,

further wherein each said index node uses said second portion of said
hashed query feature to access data according to a local hash table lo-
cated on said index node and returns a plurality of object identifiers or a
plurality of pairs of object identifiers, corresponding to said accessed data
to said home node.

8. The distributed computer database system of claim 7 wherein said home node
determines a measure of similarity between said accessed data and said elemen-
tary query and returns to said user, or uses for subsequent processing, accessed
data having a predetermined degree of similarity.

10.

. The method of claim 8 wherein said home node measures similarity using a

similarity function determined by:

(a)
(b)

features possessed by both the said accessed data and the said elementary
query; and

features possessed only by the said elementary query.

A distributed computer database system for storage and retrieval of information
objects or locations of information objects, comprising

(a)
(b)
(c)

(d)

a plurality of home nodes; and
a plurality of index nodes;

said plurality of home nodes and said plurality of index nodes connected
by a network.

wherein each said home node, upon receiving an object from a user, ex-
tracts a plurality of features from said object, each feature of said plurality
of object features being either an index feature or a link feature, hashes
each said object feature of said plurality of object features into a hashed
object feature having a first portion and a second portion, and transmits
each said hashed object feature to a respective one of said plurality of index
nodes indicated by said first portion of said hashed object feature,

20

(e)

further wherein each said index node uses said second portion of said
hashed object feature to store object identifiers according to a local hash
table located on said index node.

11. A distributed computer database system having an information retrieval tool
for handling queries from a user, comprising:

(a)
(b)
(c)

(d)
(e)

a plurality of home nodes; and
a plurality of index nodes;

said plurality of home nodes and said plurality of index nodes connected
by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

a query task enqueued being resultant in, in response to a query command
from said user, parsing the said query into a plurality of elementary queries,
each of said elementary queries being either an index query or a link query,
extracting a plurality of features from each said elementary query of said
plurality of elementary queries parsed from the said query contained in said
query command, hashing each said elementary query feature of said plu-
rality of elementary query features into a hashed elementary query feature
having a first portion and a second portion, and transmitting an elemen-
tary query message containing each said hashed elementary query feature
to a respective one of said plurality of index nodes indicated by said first
portion of said hashed elementary query feature,

said index node, upon receipt of said elementary query message, using said
second portion of said hashed elementary query feature to access data ac-
cording to a local hash table located on said index node and transmitting
a message returning a plurality of object identifiers, if the said elemen-
tary query feature is an index feature, or returning a plurality of pairs of
object identifiers, if the said elementary query feature is a link feature,
corresponding to said accessed data to said home node.

12. A distributed computer database system for storage and retrieval of information,
comprising:

(a)
(b)
(c)

a plurality of home nodes; and
a plurality of index nodes;

said plurality of home nodes and said plurality of index nodes connected
by a network.

21

(d)
(e)

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

an insert task enqueued, in response to an insert command from said user,
extracting a plurality of features from an object contained in said insert
command, each said feature of said plurality of features being either an
index feature or a link feature, hashing each said object feature of said
plurality of object features into a hashed object feature having a first por-
tion and a second portion, and transmitting an insert message containing
each said hashed object feature to a respective one of said plurality of index
nodes indicated by said first portion of said hashed object feature,

said index node, upon receipt of said insert message, using said second
portion of said hashed object feature to store data according to a local
hash table located on said index node, said data consisting of the object
identifier of the object containing the feature and, in addition, if the feature
is a link feature, the object identifier of the object referenced by the link
contained in the link feature.

13. A method for information retrieval using a query language in a distributed
computer database system having a plurality of home nodes, a plurality of index
nodes, and a plurality of object nodes connected by a network, said method
comprising the steps of:

(a)
(b)

selecting a first one of said plurality of home nodes;

parsing, by said selected home node, a query conforming to the said query
language, from a user, to obtain a plurality of elementary queries;

each of said elementary queries being either an index query or an object
query;

extracting, by said selected home node, a plurality of features from each
index query of the said plurality of elementary queries;

hashing, by said selected home node, each said index query feature of said
plurality of index query features, said hashed index query feature having
a first portion and a second portion;

extracting, by said selected home node, an object identifier from each ob-
ject query of the plurality of elementary queries, said object identifier hav-
ing a first portion and a second portion;

transmitting, by said selected home node, each said hashed index query
feature of said plurality of elementary query features to a respective one
of said plurality of index nodes indicated by said first portion of each said
hashed index query feature;

22

14.

15.

16.

17.

(h) transmitting, by said selected home node, the object identifier contained
in each said object query to a respective one of said plurality of object
nodes indicated by said first portion of the said object identifier contained
in each said object query;

(i) using by said index node, said second portion of said respective hashed
index query feature to access data according to a local hash table located
on said index node;

(j) using by said object node, said second portion of said respective object
identifier to access data according to a local table located on said object
node;

(k) returning, by each said index node accessing data according to said respec-
tive hashed index query feature a plurality of object identifiers correspond-
ing to said accessed data to said selected home node; and

(I) returning, by each said object node accessing data according to the said
object identifier contained in said respective object query, a plurality of
object identifiers corresponding to said accessed data to said selected home
node.

The method of claim 13 further comprising the step of receiving, at said home
node, said query from said user, prior to the step of parsing said query.

The method of claim 14 further comprising the steps of:

(a) determining, by said home node, a measure of similarity between said
accessed data and said index query; and

(b) returning to said user or using for subsequent processing, by said home
node, accessed data having a degree of similarity determined by the said
index query,

subsequent to the step of returning said plurality of object identifiers.

The method of claim 15 wherein said measure of similarity is determined by a
similarity function based on:

(a) features possessed by both the said accessed data and the said index query;
and

(b) features possessed only by the said index query.

A method of storing objects or locations of objects in a manner which is con-
ducive to information retrieval using a query language in a distributed computer

23

database system having a plurality of home nodes, a plurality of index nodes
and a plurality of object nodes connected by a network, said method comprising
the steps of:

(a) selecting a first one of said plurality of home nodes;

(b) extracting, by said selected home node, a plurality of features from an
object submitted by a user;

(c) extracting, by said selected home node, a plurality of object identifiers of
the objects referenced by the said object submitted by a user, each said
object identifier having a first portion and a second portion;

(d) hashing, by said selected home node, each said object feature of said plu-
rality of object features, said hashed object feature having a first portion
and a second portion;

(e) transmitting, by said selected home node, each said hashed object feature
of said plurality of features to a respective one of said plurality of index
nodes indicated by said first portion of each said hashed object feature;

(f) using, by said index node, said second portion of said respective hashed
object feature to store data according to a local hash table located on said
index node;

(g) transmitting, by said selected home node, the object identifier of the said
object submitted by a user, to the plurality of object nodes indicated by
said first portion of each said object identifier of the said plurality of object
identifiers of the objects referenced by the said object submitted by a user;

(h) using, by said object node, said second portion of each said object identifier
of the said plurality of object identifiers to store data according to a local
table located on said object node;

(i) transmitting, by said selected home node, the said plurality of object iden-
tifiers of the objects referenced by the said object submitted by a user to
a respective one of said plurality of object nodes indicated by said first
portion of said object identifier of the said object submitted by a user; and

(j) using, by said object node, said second portion of the said object identifier
of the said object submitted by a user, to store data according to a local
table located on said object node, said data consisting of the plurality of
object identifiers of the objects referenced by the said object submitted by
a user.

18. The method of claim 17 further comprising the step of receiving, at said home
node, said object from said user, prior to the step of extracting features from
said object.

24

19. A distributed computer database system having an information retrieval tool
for handling queries from a user comprising:

(a)
(b)
(c)
(d)

(e)

a plurality of home nodes;
a plurality of index nodes; and
a plurality of object nodes;

said plurality of home nodes, said plurality of index nodes and said plurality
of object nodes connected by a network.

wherein each said home node, upon receiving a query from a user, parses
the said query to obtain a plurality of elementary queries, each of which
is either an index query or an object query, extracts an object identifier
from each said object query, each said object identifier having a first por-
tion and a second portion, extracts a plurality of features from each said
index query, hashes each said index query feature of said plurality of index
query features into a hashed index query feature having a first portion and
a second portion, transmits each said hashed index query feature to a re-
spective one of said plurality of index nodes indicated by said first portion
of said hashed query feature, and transmits each said object identifier to
a respective one of said plurality of object nodes indicated by said first
portion of said object identifier,

further wherein each said index node uses said second portion of said
hashed query feature to access data according to a local hash table located
on said index node and returns a plurality of object identifiers correspond-
ing to said accessed data to said home node, each said object node uses
said second portion of said object identifier to access data according to a
local table located on said object node and returns a plurality of object
identifiers corresponding to said accessed data to said home node.

20. The distributed computer database system of claim 19 wherein said home node
determines a measure of similarity between said accessed data and said elemen-
tary query and returns to said user, or uses for subsequent processing, accessed
data having a predetermined degree of similarity.

21.

The method of claim 20 wherein said home node measures similarity using a
similarity function determined by:

(a)
(b)

features possessed by both the said accessed data and the said index query;
and

features possessed only by the said index query.

25

22. A distributed computer database system for storage and retrieval of information
objects or locations of information objects, comprising

(a)
(b)
(c)
(d)

(e)

a plurality of home nodes;
a plurality of index nodes; and
a plurality of object nodes;

said plurality of home nodes, said plurality of index nodes and said plurality
of object nodes connected by a network.

wherein each said home node, upon receiving an object from a user, ex-
tracts a plurality of features from said object, hashes each said object
feature of said plurality of object features into a hashed object feature
having a first portion and a second portion, extracts a plurality of object
identifiers of the objects referenced by the said object, each said object
identifier having a first portion and a second portion, transmits each said
hashed object feature to a respective one of said plurality of index nodes
indicated by said first portion of said hashed object feature, transmits the
object identifier of the said object to the plurality of object nodes indicated
by said first portion of each said object identifier of the said plurality of
object identifiers, transmits the said plurality of object identifiers to a re-
spective one of said plurality of object nodes indicated by the said first
portion of the said object identifier,

further wherein each said index node uses said second portion of said
hashed object feature to store objects or locations of objects according
to a local hash table located on said index node, each said object node
uses said second portion of said object identifier to store data according to
a local table located on said object node.

23. A distributed computer database system having an information retrieval tool
for handling queries from a user, comprising:

(a)
(b)
(c)
(d)

(e)

a plurality of home nodes;
a plurality of index nodes; and
a plurality of object nodes;

said plurality of home nodes, said plurality of index nodes and said plurality
of object nodes connected by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

26

(f)

a query task enqueued being resultant in, in response to a query command
from said user, parsing the said query into a plurality of elementary queries,
each of said elementary queries being either an index query or an object
query, extracting a plurality of features from each said index query of said
plurality of elementary queries parsed from the said query contained in
said query command, extracting an object identifiers from each said object
query of said plurality of elementary queries parsed from the said query
contained in said query command, each said object identifier having a first
portion and a second portion, hashing each said index query feature of said
plurality of index query features into a hashed index query feature having
a first portion and a second portion, transmitting an index query message
containing each said hashed index query feature to a respective one of said
plurality of index nodes indicated by said first portion of said hashed index
query feature, transmitting an object query message containing said object
identifier to a respective one of said plurality of object nodes indicated by
said first portion of said object identifier,

said index node, upon receipt of said index query message, using said
second portion of said hashed index query feature to access data according
to a local hash table located on said index node and transmitting a message
returning a plurality of object identifiers corresponding to said accessed
data to said home node, said object node, upon receipt of said object query
message, using said second portion of said object identifier to access data
according to a local table located on said object node and transmitting
a message returning a plurality of object identifiers corresponding to said
accessed data to said home node.

24. A distributed computer database system for storage and retrieval of information,
comprising:

(a)
(b)
(c)
(d)

(e)
(f)

a plurality of home nodes;
a plurality of index nodes; and
a plurality of object nodes;

said plurality of home nodes, said plurality of index nodes and said plurality
of object nodes connected by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

an insert task enqueued, in response to an insert command from said user,
extracting a plurality of features from an object contained in said insert

27

25.

26.

27.

28.

command, extracting a plurality of object identifiers of the objects refer-
enced by the said object, each said object identifier having a first portion
and a second portion, hashing each said object feature of said plurality of
object features into a hashed object feature having a first portion and a
second portion, transmitting an insert message containing each said hashed
object feature to a respective one of said plurality of index nodes indicated
by said first portion of said hashed object feature, transmitting an insert
message containing the said object identifier to the plurality of object nodes
indicated by said first portion of each said object identifier of the said plu-
rality of object identifiers, transmitting an insert message containing the
said plurality of object identifiers to a respective one of said plurality of
object nodes indicated by said first portion of said object identifier,

(g) said index node, upon receipt of said insert message, using said second
portion of said hashed object feature or of said object identifier to store
data according to a local hash table or local table located on said index
node or object node.

The method of claim 1 combined with the method of claim 13 wherein an
elementary query may be an index query, a link query or an object query.

The method of claim 25 further comprising the step of receiving, at said home
node, said query from said user, prior to the step of parsing said query.

The method of claim 26 further comprising the steps of:
(a) determining, by said home node, a measure of similarity between said
accessed data and said index query; and

(b) returning to said user or using for subsequent processing, by said home
node, accessed data having a degree of similarity determined by the said
index query,

subsequent to the step of returning said plurality of object identifiers or said
plurality of pairs of object identifiers, according to said respective hashed index
feature or hashed link feature.

The method of claim 27 wherein said measure of similarity is determined by a
similarity function based on:

a) features p()SSGSSG(l l)y both the said accessed data and the said index query;
and

(b) features possessed only by the said index query.

28

29.

30.

31.

32.

33.

34.

35.

36.

The method of claim 5 combined with the method of claim 17 wherein an object
feature may be either an index feature or a link feature, and data is stored on
both index nodes and object nodes.

The method of claim 29 further comprising the step of receiving, at said home
node, said object from said user, prior to the step of extracting features from
said object.

The method of claim 7 combined with the method of claim 19 wherein an
elementary query may be an index query, a link query or an object query.

The distributed computer database system of claim 31 wherein said home node
determines a measure of similarity between said accessed data and said elemen-
tary query and returns to said user, or uses for subsequent processing, accessed
data having a predetermined degree of similarity.

The method of claim 32 wherein said home node measures similarity using a
similarity function determined by:

(a) features possessed by both the said accessed data and the said index or
link query; and
(b) features possessed only by the said index or link query.
The method of claim 10 combined with the method of claim 22 wherein an

object feature may be either an index feature or a link feature, and data is
stored on both index nodes and object nodes.

The method of claim 11 combined with the method of claim 23 wherein an
elementary query may be an index query, a link query or an object query.

The method of claim 12 combined with the method of claim 24 wherein an
object feature may be either an index feature or a link feature, and data is
stored on both index nodes and object nodes.

29

102
User
N7
NS 104
Query ™

KN \Response

S 8

_8

106

Home Nodd

1/4

105

Front End Nodes

_8

_8

_8

_8

_8

107
Home Nodes

_8

108
Local Area Network

_8

110

109
Index Nodes

_8

Object Nodes

FIG. 1

212

2/4

209

User |

210

Front End

208Query

Home Node SRR
213index\14link 50bject query
query query
223.ontinue| 2% : 219 221 e
[Index Node] [Index Node] ~ |Object Node

processing

222

226

21601Ds

227

2ISOID
pairs

22

224]ist of OIDs,
pairs of OIDs and
object information

Fronf/ End I

225Response

User |

FIG. 2

object information

(Step 201)

(Step 202)

(Step 203)

(Step 204)

(Step 205)

(Step 206)

3/4

306
User| (Step 301)
3050bject
307 \
Front End
(Step 302)
309
310hashed
index (Step 303)
feature
313 | 314\ \
|Index Node| |Index Node] Object Node
FIG. 3
102 403 404 405
Index Query Message | “Header | EQID | HQF | Value
FIG. 4a
406 407 408 409
Index Query Response Message Header EQID OID Weight
FIG. 4b
) 410 411 112 413
Link Query Message |~ Header | EQID | HQF | Value
FIG. 4c
) 114 415 116 417 118
Link Query Response Message Header | EQID| OID1| OID2| Weight

FIG. 4d

Object Query Message

Object Query Response Message

Insert Index Message

4/4

419

Header

420
EQID

421
OID

FIG. 4e

Insert Link Message

Insert Object Message

422 423 424 425
Header EQID OID Location
426
Features. ..
427
FIG. 4f
428 429 430 431
Header OID HQF Value
FIG. 4g
432 433 434 435 436
Header OID1 OID2 HQF Value
FIG. 4h
437 438 439
Header OID Location
440
Features. ..
441

FIG. 4i

