Search System and Method based on Multiple,
Reusable Ontologies

Kenneth Baclawski, Waltham, MA

Abstract

A distributed computer database system including one or more front end computers
and one or more computer nodes interconnected by a network into a search engine
for retrieval of objects processed by a variety of interrelated ontologies. Each object
conforms to a specific ontology. A query is an object which conforms to a specific
ontology, which is to be used for retrieval of objects conforming to one or more target
ontologies. A query from a user is transmitted to one of the front end computers
which forwards the query to one of the computer nodes, termed the home node, of
the search engine. The home node extracts features from the query, according to its
ontology. These features are then hashed. Each hashed feature and the list of target
ontologies is transmitted to one node on the network. Each node on the network which
receives a hashed feature uses the hashed feature of the query to perform a search
on its respective partition of the database. The results of the searches of the local
databases consist of the object identifiers of objects that match the query and the
ontologies within which they were processed, as well as equivalent hashed features
within other ontologies. These other hashed features are forwarded, as needed, to
their respective nodes, and this process continues until the desired target ontologies
are reached. When the target ontologies are reached, the results of the searches of
the local databases are gathered by the home node. The results of the query are then
computing for each target ontology. This process may be repeated by the home node
to refine the results of the query.

References

[1] L. Aiello, J. Doyle, and S. Shapiro, editors. Proc. Fifth Intern. Conf. on Princi-
ples of Knowledge Representation and Reasoning. Morgan Kaufman Publishers,
San Mateo, CA, 1996.

[2] K. Baclawski. Distributed computer database system and method, December
1997. United States Patent No. 5,694,593. Assigned to Northeastern University,
Boston, MA.

3]

8]

[9]
[10]

[11]

1

K. Baclawski and D. Simovici. An abstract model for semantically rich infor-
mation retrieval. Technical report, Northestern University, Boston, MA, March
1994.

A. Campbell and S. Shapiro. Algorithms for ontological mediation. Technical
report, State University of New York at Buffalo, Buffalo, NY, 1998.

A. Del Bimbo, editor. The Ninth International Conference on Image Analysis
and Processing, volume 1311. Springer, September 1997.

N. Fridman. Knowledge Representation for Intelligent Information Retrieval in
Experimental Sciences. PhD thesis, College of Computer Science, Northeastern
University, Boston, MA, 1997.

R. Jain. Content-centric computing in visual systems. In The Ninth International
Conference on Image Analysis and Processing, Volume II, pages 1-13, September
1997.

Y. Ohta. Knowledge-Based Interpretation of Qutdoor Natural Color Scenes. Pit-
man, Boston, MA, 1985.

G. Salton. Automatic Text Processing. Addison-Wesley, Reading, MA, 19809.

G. Salton, J. Allen, and C. Buckley. Automatic structuring and retrieval of large
text files. Comm. ACM, 37(2):97-108, February 1994.

A. Tversky. Features of similarity. Psychological review, 84(4):327-352, July
1977.

Field of the Invention

The invention relates to computer database systems and more specifically to dis-
tributed computer database systems.

2

Background of the Invention

The basis for communication whether it is between people or computer systems is a
shared background that allows them to understand each other. This involves sharing
both of the following:

1. A language for communication.

2. A domain conceptualization that defines the shared vocabulary along with re-
lationships that may hold between the concepts denoted by the terms in the
vocabulary.

The problem of translation between different languages is an important, and many
computer systems have been developed for this purpose. However, translation be-
tween different domain conceptualizations is also important. Translation between
domain conceptualizations is called mediation. Domain conceptualizations are also
called ontologies.

For example, the vocabulary of Americans differs from that of the British even
though they share a common language. In the UK, one would say “lift” for what is
called an “elevator” in the US.

For a more complex example, the domain of medicine has a large vocabulary of
terms for chemicals, genes, laboratory procedures, diseases, etc. Within medicine
there are many subdomains that use different terminology for the same concept. Ter-
minology can also vary from one company to another, and even small groups within
a single company can have their own specialized vocabulary. Some will use the term
“Munchausen Syndrome” while others prefer “Chronic factitious illness with physi-
cal symptoms”. Some might even prefer to expand the term “factitious illness” to
“intentional production or feigning of symptoms or disabilities, either physical or psy-
chological” to make it understandable to someone with minimal medical background.

The problem of mediation between domain conceptualizations is especially difficult
for computer systems because they generally have no mechanism for dealing with
miscommunication as a result of misunderstood terminology. For example, modern
search engines simply match words in a query with words in documents. Some search
engines consider the possibility of synonymous words, but the fact that the words
might belong to different domains is not considered.

For example, suppose that one wishes to find occurrences of “Job” in the Bible.
Job is one of the persons mentioned in the Bible, and one of the books in the Bible is
named after him. However, modern search engines do not generally understand this,
and they will make errors such as matching “Job” with “work” because they regard
these two words as synonymous.

Current search engines support only a very limited ontology with just a few con-
cepts. Moreover, the ontology is inflexibly built into the search engine and only one
ontology is supported. In general, indexes of current database systems are always
limited to a single ontology.

A collection of documents, data or other kinds of information objects will be called
an object database. Information objects can be images, sound and video streams, as
well as data objects such as text files and structured documents. Each information
object is identified uniquely by an object identifier (OID). An OID can be an Internet

Universal Resource Locator (URL) or some other form of identifier such as a local
object identifier.

To assist in finding information in an object database, special search structures
are employed called inderes. Current technology generally requires a separate index
for each attribute or feature. Even the most sophisticated indexes currently available
are limited to a very small number of attributes. Since each index can be as large as
the database itself, this technology does not function well when there are hundreds or
thousands of attributes, as is often the case when objects such as images, sound and
video streams are directly indexed. Furthermore, there is considerable overhead as-
sociated with maintaining each index structure. This limits the number of attributes
that can be indexed. Current systems are unable to scale up to support databases for
which there are: many object types, including images, sound and video streams; mil-
lions of features; queries that involve many object types and features simultaneously;
and new object types and features being continually added.

3 Summary of the Invention

In the present invention, each object in an object database is assumed to be expressed
within a single domain. In other words, there is a particular domain conceptualization
(ontology) that allows one to understand the object. However, different objects may
be expressed within different ontologies and queries may use different ontologies from
the documents being searched. In addition, a single ontology may contain one or more
subontologies which may be used in this way by several ontologies. Since ontologies
may be very large, it is important to allow them to be built from smaller components.
In other words, subontologies constructed for one ontology may be reused by another.

An ontology models knowledge within a particular domain. An ontology can
include a concept network, specialized vocabulary, syntactic forms and inference rules.
In particular, an ontology specifies the features that objects can possess as well as
how to extract features from objects. The extracted features are used for determining
the degree of similarity between a query object and an object in the database. Each
feature of an object may have an associated weight, representing the strength of the
feature.

Ontologies can be related to one another in several ways, including the following:

Subset One ontology can be a subset of another. In this case the smaller ontology is
called a subontology of the other. An ontology can be a subontology of several
other ontologies.

Version One ontology can be a version of another. As domains evolve, concepts and
terminology can change enough that it is necessary to construct a new ontology
which does not simply contain the old ontology.

4

Parallel A single domain area can have different ontologies. For example, the same
company could have different terminology within its development, manufactur-
ing and marketing departments.

Except for the case of a subontology, an explicit ontological mapping or ontological
mediation is required to express concepts in one ontology in terms of concepts in a
related ontology.

It should be noted that the information objects themselves need not be stored
in the database system itself so long as their locations are available in the database
system. For example, each document in the World Wide Web is located using its
Universal Resource Locator (URL).

Current technology commonly requires that information retrieval queries be speci-
fied in an artificial query language. In the present invention queries to retrieve objects
in the database are in the same format as the objects in the database. While each
object in the database conforms to exactly one ontology and each query conforms
to exactly one ontology, a query can specify any number of target ontologies. For
reasons of efficiency and performance the present invention does not have a step in
which objects or queries are translated from one ontology to another ontology. The
translation and the information retrieval are performed simultaneously in parallel over
the distributed network of computer nodes, and objects conforming to all specified
target ontologies are retrieved.

The invention relates to a distributed computer database system which includes
one or more front end computers and one or more computer nodes interconnected by
a network. The combination of computer nodes interconnected by a network operates
as a search engine.

A user wishing to query the database, transmits the query, to one of the front
end computers which in turn forwards the query to one of the computer nodes of the
network. In the present invention, the notion of a query includes the ontology to be
used for processing the query and the target ontologies of the objects to be retrieved.
The node receiving the query, termed the home node of the search engine, extracts
the features of the received query and then hashes these features. A portion of each
hashed feature is used by the home node as an addressing index by which the home
node transmits the hashed query feature to a node on the network. The list of target
ontologies is transmitted along with the hashed query feature.

Each node on the network which receives a hashed query feature uses the hashed
query feature to perform a search on its respective database. Nodes finding data
corresponding to the hashed query feature return the OIDs of the objects possessing
this feature and conforming to one of the target ontologies. Such OIDs are then
gathered by the home node and a similarity function is computed based on the features
that are in common with the query as well as the features that are in the query but
not in the object. The similarity function is used to rank the objects. The OIDs

of the objects that have the largest similarity value are transmitted to the front end
node.

If requested, higher levels of service may be provided. For level 2 or level 3
service, the OIDs obtained in the basic service above are transmitted to the nodes on
the network by using a portion of each OID as an addressing index. In addition, if
level 3 service is requested, the features each object has in common with the query
are transmitted along with the OIDs to the same nodes on the network.

Each node on the network which receives an OID uses the OID to perform a
search on its respective database for the corresponding object information. In level
2 service, auxiliary information is retrieved and transmitted to the front end node.
The auxiliary information can include the URL of the object or an object summary
or both.

For level 3 service, a dissimilarity value is computed based on the features that the
object possesses but the query does not. The dissimilarity value as well as the auxiliary
information about the object is transmitted to the home node. The dissimilarity
values are gathered by the home node which uses them to modify the similarity
values of the objects obtained in the first level of processing. The modified similarity
values are used to rank the objects. The OIDs and any auxiliary information about
the objects that have the largest similarity value are transmitted to the front end
node.

Regardless of the level of service requested, the front end node formats the response
to the user based on the OIDs and any auxiliary information transmitted by the home
node. For example, if the front end node is a World Wide Web server, then the front
end node constructs a page in HTML format containing a reference to a URL and
auxiliary information for each object. The front end transmits the formatted response
to the user.

4 Description of the Drawings

This invention is pointed out with particularity in the appended claims. The above
and further advantages of the invention may be better understood by referring to the
following description taken in conjunction with the accompanying drawing, in which:

FIG. 1 is a block diagram of an overview of an embodiment of the distributed com-
puter database system of the invention;

FIG. 2 is an overview of the steps used by the embodiment of the distributed com-
puter database system to respond to a query;

FIG. 3 is an overview of the steps used by the embodiment of the distributed com-
puter database system to store data associated with an information object;

FIG. 4 is an overview of the steps used by the embodiment of the distributed com-
puter database system to store data associated with an ontology or associated
with a mapping between ontologies.

FIG. 5 specifies the formats of the messages transmitted between the nodes of the
distributed computer database system.

The remaining diagrams are block diagrams of the modules that perform the tasks
of the invention within each node.

5 Detailed Description of the Preferred Embodi-
ment

Referring to FIG. 1, in broad overview, one embodiment of a distributed computer
database system of the invention includes a user computer which is in communication
with a front end computer through a network. The front end computer, which may
also be the user computer, is in turn in communication with a search engine which
includes one or more computer nodes interconnected by a local area network. The in-
dividual computer nodes may include local disks, or may, alternatively or additionally,
obtain data from a network disk server.

The computer nodes of the search engine may be of several types, including home
nodes, query nodes and object nodes. The nodes of the search engine need not
represent distinct computers. In one embodiment, the search engine consists of a
single computer which takes on the roles of all home nodes, query nodes and object
nodes. In another embodiment, the search engine consists of separate computers for
each home node, query node and object node. Those skilled in the art will realize
many variations are possible which will still be within the scope and spirit of the
present invention.

Considering the processing of a query first, and referring also to FIG. 2, in one
embodiment when a user transmits (Step 201) a query from the user computer, the
front end computer receives the query. The front end computer is responsible for
establishing the connection with the user computer to enable the user to transmit a
query and to receive a response in an appropriate format. The front end computer
is also responsible for any authentication and administrative functionality. In one
embodiment, the front end computer is a World Wide Web server communicating
with the user computer using the HT'TP protocol.

After verifying that the query is acceptable, the front end computer performs any
reformatting necessary to make the query compatible with the requirements of the
search engine. The front end computer then transmits the query to one of the home

nodes of the search engine (Step 202), which is then defined as the home node of the
search engine for that query.

The home node extracts features from the query according to the ontology. Feature
extraction may be performed using traditional techniques for associating values to
attributes, such as in relational database records. Note that an object either possesses
a feature or it does not. This property is distinct from the value associated with a
feature when an object possesses the feature.

Features are extracted from structured documents by parsing the document to
produce a data structure, then dividing this data structure into (possibly overlapping)
substructures called fragments. The fragments of a structured document are the
features extracted from the document. Fragments of a query are used to find matching
fragments in the database, so they are also called probes. This same terminology will
be used for features extracted from other kinds of objects as well.

Features are extracted from unstructured documents by using knowledge extrac-
tion techniques. Knowledge extraction produces a data structure consisting of a
collection of inter-related knowledge frames. The knowledge frame data structure is
then divided into (possibly overlapping) substructures, as in the case of a structured
document, and these substructures are the features of the unstructured document.

A large variety of feature extraction algorithms have been developed for media
such as sound, images and video streams. Fourier and Wavelet transformations as
well as many filtering algorithms are used. Features can also be added to an ob-
ject by manual or semi-automated means. Such added features are referred to as
annotations or meta-data. Features are extracted from annotations using one of the
techniques mentioned above, depending on whether the annotation is a relational
database record, a structured document or an unstructured document. Each feature
can have a value associated with it, and one can specify relationships between fea-
tures which can also have values associated with them. For example, one feature can
be contained within another feature or be adjacent to another feature. The ontology
specifies the feature extraction algorithms as well as the structure of the features.

If a feature occurs very commonly in the database, then it does not contribute to
the purpose of the search engine; namely, distinguishing those objects that are similar
to a particular query. An example is the brightness of an image. Such a feature will
be partitioned into a collection of contiguous, non-overlapping ranges of the value
associated with the feature rather than the feature itself. Each range of the value
is then regarded as a separate feature. When the features of a query are extracted,
features that represent value ranges near, but not including, the value of the feature
in the query are also included as features of the query, but with smaller strength than
the feature representing a value range that includes the value of the feature in the
query. The value ranges for a particular feature can either be specified explicitly in
the ontology, or they can be constructed dynamically as objects are indexed by the

search engine.

The home node then encodes each feature of the query by using a predefined
hashing function. Data in the system was previously stored locally on the various
query nodes using this hashing function to generate an index to the data in the local
database. Thus, the use of the same hashing function to generate an index for data
storage and to generate hashed probes for a data query assures that 1.) data is
distributed uniformly over the query nodes of the search engine during the storing
of data and 2.) the probes are scattered uniformly over the query nodes during the
processing of a query.

In one embodiment, the hash value resulting from the use of the hashing function
has a first portion which serves to identify the query node to which the data is to be
sent to be stored or to which a query feature is to be sent as a probe and a second
portion which is the local index value which is used to determine where data is to be
stored at or retrieved from the query node. Thus, in terms of a query, the hashed
query features are distributed (Step 203) as probes to certain query nodes of the
search engine, as determined by the first portion of the hash value.

At a first or basic service level, query nodes whose probes match the index features
by which the data was initially stored on that query node respond to the query in
one or both of the following ways:

e If the ontology mapping of a hashed query fragment matches one of the specified
ontology mappings, the hashed query fragment is transmitted (Step 204) to the
query node of the search engine, as determined by the first portion of the hash
value. This query node repeats this process.

e If the ontology of an OID matches one of the target ontologies, the OID is
transmitting (Step 205) to the home node.

Thus all matches between the hashed probes, mapped to target ontologies, and the
local hash table of index terms are returned or gathered to the home node which
initially received the query.

The home node then determines the relevance of each object returned in the
search. This determination of relevance is made by the home node by comparing the
degree of similarity between the query and the objects whose OIDs were returned.
The determination of relevance is made separately for the objects belonging to each
target ontology. In one embodiment the measure of similarity between the query and
the object is a cosine measure and is given by the expression COS (v, w), where the
vector v denotes the query and the vector w denotes the object. These vectors are in
a space in which each feature represents one dimension of the space.

Another commonly used measure of similarity between two objects is a distance
function in the same space mentioned above for the cosine measure. However, there

is convincing evidence that human similarity does not satisfy the axioms of a distance
function. The model that currently seems to be the most successful approach is the
Feature Contrast Model of Tversky. In this model, the similarity between a query
and an object is determined by three terms:

1. The features that are common to the query and the object.
2. The features of the query that are not features of the object.
3. The features of the object that are not features of the query.

The first term contributes a positive number to the similarity value, while the second
and third terms have negative contributions. In addition the second and third terms
are multiplied by predefined constants such that a feature in the second and third set
has less effect on the similarity than one in the first set.

In one embodiment the measure of similarity between the query and the object
is a measure determined by three predefined constants that are used to multiply the
three terms occurring in the Feature Contrast Model. In this embodiment, if the
level of service is specified to be either basic or level 2, then only the first two terms
of the Feature Contrast Model are used to compute the measure of similarity, or
equivalently, the predefined constant for the third term is set to zero. Since the third
term is the least important, it has only a small effect on the ranking of the objects that
are retrieved. If all three terms are to be used, then level 3 service can be requested.

In one embodiment the NV objects with the highest similarity in each target ontol-
ogy are returned. In another embodiment all objects which generate similarity values
greater than a predetermined value are considered sufficiently similar to the query to
be returned to the user as relevant information.

Once the similarity is determined, the home node orders the OIDs according to
their degree of similarity in each ontology, and then returns a set of lists of the most
relevant OIDs, each list containing the most relevant OIDs for one ontology. In one
embodiment the set of lists of the most relevant OIDs is transmitted to the front
end (Step 205) computer which formats the response appropriately and transmits
the response to the user. In another embodiment the set of lists of the most relevant
OIDs is transmitted directly to the user computer by way of the network without the
intervention of the front end computer.

Alternatively, for higher levels of service (level 2 and level 3), the home node
transmits the most relevant OIDs to the object nodes (Step 206) which hold infor-
mation associated with the objects identified by the OIDs. In one embodiment, the
information associated with each object is the URL for the object. In another em-
bodiment, the information associated with each object is the object itself. In another
embodiment, the information associated with each object is the list of all features

10

of the object and the values of the features for those features that have associated
values.

In one embodiment, the OIDs have a first portion which serves to identify the
object node on which the object information is stored and a second portion which
is the local index value which is used to determine where the object information is
stored in a local table at the object node.

For level 2 service, the object nodes return the object information of the most
relevant objects. In one embodiment the object information of the most relevant ob-
jects is transmitted to the front end (Step 207) computer which formats the response
appropriately and transmits the response to the user. In another embodiment the
object information of the most relevant objects is transmitted directly to the user
computer by way of the network without the intervention of the front end computer.

For level 3 service, the object nodes transmit the object information of the most
relevant objects to the home node (Step 207). The home node uses the object in-
formation of the relevant objects to recompute the measure of similarity between the
query and the objects. This may result in the objects being arranged in a different
order for each target ontology, and may also result in a different list of objects be-
ing returned for each target ontology. In one embodiment, the measure of similarity
utilizes the Feature Contrast Model and all three terms have nonzero predefined con-
stants. In this embodiment, the object information contains a list of the features of
the object so that features of the object that are not features of the query may be
included in the measure of similarity.

For level 3 service, the home node returns the object information of the most
relevant objects. In one embodiment the object information of the most relevant ob-
jects is transmitted to the front end (Step 208) computer which formats the response
appropriately and transmits the response to the user. In another embodiment the
object information of the most relevant objects is transmitted directly to the user
computer by way of the network without the intervention of the front end computer.

Considering next the indexing of an object, and referring also to FIG. 3, in one
embodiment when a user transmits (Step 301) an object from the user computer,
the front end computer receives the object. The front end computer is responsible
for establishing the connection with the user computer to enable the user to transmit
an object. In another embodiment the front end computer automatically examines
objects in its environment for indexing by the search engine without interaction with
a user.

The front end selects a home node and transmits the object to the selected home
node (Step 302). In one embodiment, the selection of a home node is done randomly
so as to evenly distribute the workload among the home nodes. The home node
assigns a unique OID to the object, then processes the object as discussed above in
the case of a query (Step 303), except that data associated with the object is stored

11

in the query nodes and an object node.

Considering last the processing of an ontology mediation, and referring also to
FIG. 4, in one embodiment when a user transmits (Step 401) an ontology mediation
from the user computer, the front end computer receives the ontology mediation.
The front end computer is responsible for establishing the connection with the user
computer to enable the user to transmit an ontology mediation.

The front end selects a home node and transmits the ontology mediation to the
selected home node (Step 302). The home node constructs a feature mapping that
implements the ontology mediation and transmits the feature mapping to every query
node (Step 403). Each query node stores the feature mapping in a local table. A
background process is then started on each query node to examine every hashed object
fragment and to store the mapped hashed object fragments if the feature mapping
applies to it (Step 404). This local table is consulted whenever a new hashed object
fragment is stored as described above and referring also to FIG. 3.

Considering next the message formats used in the preferred embodiment, refer to
FIG. 5. The Query Message has two parts: Identifier and Target. The Identifier
part has four fields: Header, Query Identifier (QID), Hashed Query Fragment (HQF)
and Value. The Header field specifies that this message is a Query Message and also
specifies the destination query node. The destination query node is determined by
the first portion of the hashed query fragment. The QID field contains a query type
specifier and a query identifier. The query type specifier determines the ontology in
which the query was specified. The HQF field contains a fragment type specifier and
the second portion of the hashed query fragment produced by the Hashing Module.
The Value field contains an optional value associated with the fragment. The fragment
type specifier determines whether the Query Message contains a Value field, and if the
Query Message does contain a Value field then the fragment type specifier determines
the size of the Value field. The Target part contains a list of target ontology identifiers.
An ontology is also called a knowledge model, and an ontology identifier is abbreviated
KID.

The Query Response Message contains four fields: Header, QID, Object Identifier
(OID) and Weight. The Header field specifies that this message is a Query Response
Message and also specifies the destination home node. The destination home node is
the home node from which the corresponding Query Message was received. The QID
field contains a query type specifier and a query identifier. The OID field contains an
object type specifier and an object identifier. The object type specifier determines the
ontology in which the object was processed. The Weight field contains an optional
weight associated with the object. The object type specifier determines whether the
Query Response Message contains a Weight field, and if the Query Response Message
does contain a Weight field then the object type specifier determines the size of the
field.

12

The Object Message has three fields: Header, QID and OID. The Header field
specifies that this message is an Object Message and also specifies the destination
object node. The destination object node is determined by the first portion of the
object identifier. The QID field contains a query type specifier and a query identifier.
The OID field contains an object type specifier and the second portion of the object
identifier.

The Object Response Message has three parts: Identifier, Feature and Auxiliary.
The Identifier part has four fields: Header, QID, OID and Location. The Header
field specifies that this message is an Object Response Message and also specifies the
destination home node. The destination home node is the home node from which
the corresponding Object Message was received. The QID field contains a query
type specifier and a query identifier. The OID field contains an object type specifier
and the object identifier. The Location field contains an optional location specifier
such as a URL. The object type specifier determines whether the Object Response
Message contains a Location field, and if the Object Response Message does contain
a Location field, then the object type specifier determines the size of the Location
field. The Feature part contains a number of features associated with the object.
The Auxiliary part contains auxiliary information associated with the object. The
object type specifier determines whether the Object Response Message contains an
Auxiliary part, and if the Object Response Message does contain an Auxiliary part,
then the object type specifier determines the size and structure of the Auxiliary part.

The Insert Message has two parts: Identifier and Target. The Identifier part has
four fields: Header, OID, HQF and Value. The Header field specifies that this message
is an Insert Message and also specifies the destination query node. The destination
object node is determined by the first portion of the hashed query fragment. The
OID field contains an object type specifier and the object identifier. The HQF field
contains a fragment type specifier and the second portion of the hashed query frag-
ment produced by the Hashing Module. The Value field contains an optional value
associated with the fragment. The fragment type specifier determines whether the
Query Message contains a Value field, and if the Query Message does contain a Value
field then the fragment type specifier determines the size of the Value field. The
Target part contains a list of target ontology identifiers.

The Insert Object Message has three parts: Identifier, Feature and Auxiliary. The
Identifier part has three fields: Header, OID and Location. The Header field specifies
that this message is an Insert Object Message and also specifies the destination object
node. The destination object node is determined by the first portion of the object
identifier. The OID field contains an object type specifier and the second portion of
the object identifier. The Location field contains an optional location specifier such
as a URL. The object type specifier determines whether the Insert Object Message
contains a Location field, and if the Insert Object Message does contain a Location

13

field, then the object type specifier determines the size of the Location field. The
Feature part contains a number of features associated with the object. The Auxil-
iary part contains auxiliary information associated with the object. The object type
specifier determines whether the Insert Object Message contains an Auxiliary part,
and if the Insert Object Message does contain an Auxiliary part, then the object type
specifier determines the size and structure of the Auxiliary part.

The Mediation Message has two parts: Identifier and Mapping. The Identifier
part has four fields: Header, MT, KID1 and KID2. The Header field specifies that
this message is a Mediation Message and also specifies the destination query node.
The Mediation Type (MT) field contains a mediation type specifier. The KID1 field
contains the ontology identifier of the originating ontology from which the mediation
takes place. The KID2 field contains the ontology identifier of the target ontology to
which the mediation maps. The Mapping part contains the feature mapping specifi-
cation. The structure and size of the feature mapping specification is determined by
the MT field.

Considering next the Communication Module contained in the computer nodes
used in the preferred embodiment, refer to Fig. 6, 7 and 8. The Communication
Module is responsible for transmitting and receiving messages from one node to an-
other. The destination node for a message to be transmitted is specified in the Header
field of each message. When a message is received from another node, the type of
message determines which module will process the message. The message type is
specified in the Header field of each message.

The Communication Module of a home node is also responsible for communication
with the Front End nodes. A Front End node transmits queries, objects and ontology
mediations to the home node, and the home node transmits results to the Front End
node.

Considering next the modules contained in the home nodes used in the preferred
embodiment, refer to Fig. 6. The Feature Extractor extracts features from a query
or object. Feature extraction for images is performed by detecting edges, identifying
the image objects, classifying the image objects as domain objects and determining
relationships between domain objects. In another embodiment, feature extraction
for images is performed by computing Fourier or wavelet transforms. Each Fourier
or wavelet transform constitutes one extracted feature. The Feature Extractor is
also responsible for selecting target ontologies based on specifications in the query
or object. The extracted features and target ontology identifiers are transferred to
the Fragmenter. In addition, when features have been extracted from an object, the
features are transferred to the Communication Module in the form of an Insert Object
Message.

The Fragmenter computes the fragments contained in each feature. Each fragment
consists of a bounded set of related components in the feature. In one embodiment,

14

the fragments of a feature consist of each attribute and each relationship in the data
structure defining the feature. The fragments and target ontologies are transferred to
the Hashing Module.

The Hashing Module computes a hash function of a fragment. In one embodi-
ment, the hash function is the MD4 message digest function. The Hashing Module
transfers either a Query Message or an Insert Message to the Communication Mod-
ule, depending on whether the fragment is a query fragment or an object fragment,
respectively.

The Similarity Comparator receives Query Response Messages and produces Ob-
ject Messages which are transferred to the Communication Module. The Similarity
Comparator gathers all the query responses for a query. For each object in the re-
sponses, the Similarity Comparator determines the relevance of each object returned
in the search. This determination of relevance is made by the home node by com-
paring the degree of similarity between the query and the objects whose OIDs were
returned. In one embodiment the measure of similarity between the query and the
object is a cosine measure and is given by the expression COS(v,w), where the vector
v denotes the query and the vector w denotes the object. These vectors are in a space
in which each fragment represents one dimension of the space. The most relevant
OIDs are transferred to the Communication Module using an Object Message.

The Response Constructor receives Object Response Messages. It formats a re-
sponse by collecting all the Object Response Messages having the same QID field. In
one embodiment, each Object Response Messages results in one row of the formatted
table. The entries in the row are determined by each feature of the Features part of
the Object Response Message. In addition, one entry in the row specifies the Location
field. The arrangement of the rows within the table is determined by the Auxiliary
parts of the Object Request Messages. The formatted response is transmitted to the
front end from which the query was received.

The Mediation Module receives ontology mediation specifications and transmits
Mediation Messages. Ontology mediation maps terminology in one ontology, called
the originating or source ontology, to terminology in another ontology, called the
target or destination ontology. The Mediation Module determines the identifiers of the
originating and target ontologies. The mediation specification determines a number
of feature mappings. For example, “Munchausen Syndrome” in a medical ontology
could be mapped to “Chronic intentional production of symptoms or disabilities,
either physical or psychological” in another ontology. Each mediation specification is
expressed as a feature mapping. There can be many types of mediation specification,
such as definitions, ingredients and procedures. The mediation type determines the
type of the mediation specification and the feature mapping. The Mediation Module
constructs a Mediation Message for each query node. These Mediation Messages are
identical except for the destination query node specified in the Header field. Each

15

Mediation Message is transferred to the Communication Module.

Considering next the modules contained in the query nodes used in the preferred
embodiment, refer to Fig. 7. The Fragment Table receives Query Messages and Insert
Messages. In the case of a Query Message the Fragment Table retrieves an entry in
the local hash table using the hash value in the HQF field. The type specifier in
the HQF field and the entry in the local hash table are transferred to the Fragment
Comparator. If there are any target KIDs in the Query Message and if the entry
specifies a mapping from the ontology of the entry to one of the target KIDs, then
the Query Message and the entry are transferred to the Mapping Module.

In the case of an Insert Message, the Fragment Table modifies an entry in the local
hash table by adding the OID and Value fields of the Insert Message to the entry in
the local hash table. If there are any target KIDs in the Insert Message, then the
Insert Message is transferred to the Mapping Module.

The Fragment Comparator receives entries from the Fragment Table. A compar-
ison function is determined by the HQF type specifier that was transferred from the
Fragment Table. The comparison function is used to determine the relevance of the
OID and Value fields in the entry that was transferred from the Fragment Table. In
one embodiment, the comparison function determines a similarity weight, and the
OIDs having the highest similarity weight are deemed to be relevant. The relevant
OIDs and their similarity weights are transferred to the Communication Module using
a Query Response Message.

The Mapping Module receives Query Messages and Insert Messages from the
Fragment Table. For a Query Message, the Mapping Module constructs a number of
Query Messages for each target ontology specified by a target KID. When there is no
direct mapping from the originating ontology to the target ontologies, the constructed
Query Message will contain target KIDs. In this case the mapping proceeds through
intermediate ontologies and requires several stages to reach the target ontology. For
an Insert Message, the Mapping Module constructs a number of Insert Messages for
each target ontology specified by a target KID, using the feature mapping in the local
table of feature mappings.

The Mediation Module receives Mediation Messages. For each Mediation Message,
a background process is initiated that is responsible for examining every hashed object
fragment to determine the corresponding mapped hashed object fragments determined
by the feature mapping. In addition, the feature mapping is stored in a local table
which is used by the Mapping Module.

Considering next the module contained in the object nodes used in the preferred
embodiment, refer to Fig. 8. The Object Table receives Object Messages and Insert
Object Messages. In the case of an Object Message, the Object Table retrieves an en-
try in the local table using the object identifier in the OID field of the Object Message.
The Object Message and the retrieved entry are transmitted to the Communication

16

Module using an Object Response Message. In the case of an Insert Object Message,
the Object Table inserts a new entry in the local table. If an entry already exists
for the specified object identifier, then the existing entry is replaced. The new or
replacement entry contains the information in the Insert Object Message.

6 Claims

Having shown the preferred embodiment, those skilled in the art will realize many
variations are possible which will still be within the scope and spirit of the claimed

invention.

Therefore, it is the intention to limit the invention only as indicated by

the scope of the claims.
What is claimed is:

1. A method for information retrieval using fuzzy queries in a distributed computer
database system having a plurality of home nodes and a plurality of query nodes
connected by a network, said method comprising the steps of:

(a)
(b)

(c)

(d)

selecting a first one of said plurality of home nodes;

extracting, by said selected home node, a plurality of features and a plu-
rality of target ontology identifiers from a query by a user;

hashing, by said selected home node, each said query feature of said plu-
rality of query features, said hashed query feature having a first portion
and a second portion;

transmitting, by said selected home node, each said hashed query feature
of said plurality of query features and said plurality of target ontology
identifiers to a respective one of said plurality of query nodes indicated by
said first portion of each said hashed query feature;

using by said query node, said second portion of said respective hashed
query feature to access data according to a local hash table located on said
query node;

using by said query node, said plurality of target ontology identifiers and
said accessed data according to said respective hashed query feature, to
extract a plurality of hashed features and a plurality of object identifiers;

transmitting, by said query node, each said hashed feature of said plurality
of hashed features and said plurality of target ontology identifiers to a
respective one of said plurality of query nodes indicated by said first portion
of each said hashed feature; and

17

(h) returning, by each said query node accessing data according to said respec-
tive hashed feature, a plurality of object identifiers corresponding to said
accessed data to said selected home node.

2. The method of claim 1 further comprising the step of receiving, at said home
node, said query from said user, prior to the step of extracting features from
said query.

3. The method of claim 2 further comprising the steps of:
(a) determining, by said home node, a measure of similarity between said
accessed data and said query; and
(b) returning to said user, by said home node, accessed data having a prede-
termined degree of similarity,

subsequent to the step of returning said plurality of object identifiers.

4. The method of claim 3 wherein said measure of similarity is determined by a
similarity function based on:

(a) features possessed by both the said accessed data and the said query; and

(b) features possessed only by the said query.

5. A method of storing objects or locations of objects in a manner which is con-
ducive to information retrieval using fuzzy queries in a distributed computer
database system having a plurality of home nodes and a plurality of query
nodes connected by a network, said method comprising the steps of:

(a) selecting a first one of said plurality of home nodes;

(b) extracting, by said selected home node, a plurality of features from an
object submitted by a user;

(c) hashing, by said selected home node, each said object feature of said plu-
rality of object features, said hashed object feature having a first portion
and a second portion;

(d) transmitting, by said selected home node, each said hashed object feature
of said plurality of features to a respective one of said plurality of query
nodes indicated by said first portion of each said hashed object feature;

(e) using, by said query node, said second portion of said respective hashed
object feature to store data according to a local hash table located on said
query node; and

18

(f)

applying, by said query node, any applicable ontology mappings to said
hashed object feature and storing data in said local hash table located on
said query node.

6. The method of claim 5 further comprising the step of receiving, at said home
node, said object from said user, prior to the step of extracting features from
said object.

7. A distributed computer database system having an information retrieval tool
for handling queries from a user comprising:

(a)
(b)
(c)

(d)

a plurality of home nodes; and
a plurality of query nodes;

said plurality of home nodes and said plurality of query nodes connected
by a network.

wherein each said home node, upon receiving a query from a user, extracts
a plurality of features and a plurality of target ontology identifiers from
said query, hashes each said query feature of said plurality of query features
into a hashed query feature having a first portion and a second portion,
and transmits each said hashed query feature and said plurality of target
ontology identifiers to a respective one of said plurality of query nodes
indicated by said first portion of said hashed query feature,

wherein each said query node uses said second portion of said hashed query
feature to access data according to a local hash table located on said query
node,

further wherein each said query node uses said plurality of target ontology
identifiers and said accessed data to extract a plurality of hashed features
and a plurality of object identifiers, and transmits each said hashed feature
of said plurality of hashed features and said plurality of target ontology
identifiers to a respective one of said plurality of query nodes indicated
by said first portion of said hashed feature, and returns said plurality of
object identifiers corresponding to said accessed data to said home node.

8. The distributed computer database system of claim 7 wherein said home node
determines a measure of similarity between said accessed data and said query
and returns to said user accessed data having a predetermined degree of simi-
larity.

9. The method of claim 8 wherein said home node measures similarity using a
similarity function determined by:

19

(a) features possessed by both the said accessed data and the said query; and
(b) features possessed only by the said query.

10. A distributed computer database system for storage and retrieval of information
objects or locations of information objects, comprising

(a) a plurality of home nodes; and
(b) a plurality of query nodes;

(c) said plurality of home nodes and said plurality of query nodes connected
by a network.

(d) wherein each said home node, upon receiving an object from a user, ex-
tracts a plurality of features from said object, hashes each said object fea-
ture of said plurality of object features into a hashed object feature having
a first portion and a second portion, and transmits each said hashed object
feature to a respective one of said plurality of query nodes indicated by
said first portion of said hashed object feature, and

(e) wherein each said query node uses said second portion of said hashed object
feature to store objects or locations of objects and hashed features defined
by ontology mappings, according to a local hash table located on said query
node.

11. A distributed computer database system having an information retrieval tool
for handling queries from a user, comprising:

(a) a plurality of home nodes; and
(b) a plurality of query nodes;

(c) said plurality of home nodes and said plurality of query nodes connected
by a network.

(d) each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

(e) a query task enqueued being resultant in, in response to a query command
from said user, extracting a plurality of features and a plurality of target
ontology identifiers from a query contained in said query command, hash-
ing each said query feature of said plurality of query features into a hashed
query feature having a first portion and a second portion, and transmit-
ting a query message containing each said hashed query feature and said
plurality of target ontology identifiers to a respective one of said plurality
of query nodes indicated by said first portion of said hashed query feature,

20

(f)

said query node, upon receipt of said query message, using said second
portion of said hashed query feature to access data according to a local
hash table located on said query node, said data consisting of a plural-
ity of object identifiers and a plurality of hashed features, transmitting a
message returning a plurality of object identifiers corresponding to said
accessed data to said home node, and for each hashed feature of said plu-
rality of hashed features, transmitting a message containing said hashed
feature and said plurality of target ontology identifiers to a respective one
of said plurality of query nodes indicated by said first portion of said hashed
feature.

12. A distributed computer database system for storage and retrieval of information,
comprising:

(a)
(b)
(c)

(d)
(e)

a plurality of home nodes; and
a plurality of query nodes;

said plurality of home nodes and said plurality of query nodes connected
by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

an insert task enqueued, in response to an insert command from said user,
extracting a plurality of features from an object contained in said insert
command, hashing each said object feature of said plurality of object fea-
tures into a hashed object feature having a first portion and a second
portion, and transmitting an insert message containing each said hashed
object feature to a respective one of said plurality of query nodes indicated
by said first portion of said hashed object feature,

said query node, upon receipt of said insert message, using said second
portion of said hashed object feature to store data according to a local
hash table located on said query node, and using any ontology mappings
applicable to said hashed object feature to store data in said local hash
table located on said query node.

13. A method for information retrieval using fuzzy queries in a distributed computer
database system having a plurality of home nodes, a plurality of query nodes
and a plurality of object nodes connected by a network, said method comprising
the steps of:

(a)

selecting a first one of said plurality of home nodes;

21

14.

15.

(b)
(c)

(d)

extracting, by said selected home node, a plurality of features and a plu-
rality of target ontology identifiers from a query by a user;

hashing, by said selected home node, each said query feature of said plu-
rality of query features, said hashed query feature having a first portion
and a second portion;

transmitting, by said selected home node, each said hashed query feature
of said plurality of query features and said plurality of target ontology
identifiers to a respective one of said plurality of query nodes indicated by
said first portion of each said hashed query feature;

using by said query node, said second portion of said respective hashed
query feature to access a plurality of object identifiers and a plurality of
hashed features according to a local hash table located on said query node,
each said object identifier having a first portion and a second portion;

transmitting, by said query node, each said hashed feature of said plurality
of hashed features and said plurality of target ontology identifiers to a
respective one of said plurality of query nodes indicated by said first portion
of each said hashed feature;

returning, by each said query node accessing data according to said re-
spective hashed query feature, each said accessed object identifier to said
selected home node.

transmitting, by said selected home node, each said object identifier of said
plurality of object identifiers to a respective one of said plurality of object
nodes indicated by said first portion of each said object identifier;

using by said object node, said second portion of said respective object
node to access data according to a local object table located on said object
node; and

returning, by each said object node accessing data according to said re-
spective object identifier, an object location, object features and other
auxiliary information to said selected home node.

The method of claim 13 further comprising the step of receiving, at said home
node, said query from said user, prior to the step of extracting features from
said query.

The method of claim 14 further comprising the steps of:

(a)

determining, by said home node, a measure of similarity between said
accessed data and said query; and

22

16.

17.

(b) returning to said user, by said home node, accessed data having a prede-
termined degree of similarity,

subsequent to the step of returning said object location and auxiliary data.

The method of claim 15 wherein said measure of similarity is determined by a
similarity function based on:

(a) features possessed by both the said accessed data and the said query;
(b) features possessed only by the said query; and

(c) features possessed only by said accessed data.

A method of storing objects or locations of objects in a manner which is con-
ducive to information retrieval using fuzzy queries in a distributed computer
database system having a plurality of home nodes, a plurality of object nodes
and a plurality of query nodes connected by a network, said method comprising
the steps of:

(a) selecting a first one of said plurality of home nodes;

(b) selecting, by said selected home node, a unique object identifier for an
object selected by a user, said object identifier having a first portion and
a second portion;

(c) using the said first portion of said object identifier to select one of said
plurality of object nodes;

(d) extracting, by said selected home node, a plurality of features from the
said object submitted by a user.

(e) hashing, by said selected home node, each said object feature of said plu-
rality of object features, said hashed object feature having a first portion
and a second portion;

(f) transmitting, by said selected home node, the location of the said object,
the said plurality of hashed object features of the said object and any aux-
iliary information about the said object to a respective one of said plurality
of object nodes indicated by said first portion of said object identifier;

(g) using, by said object node, said second portion of said object identifier to
store data according to a local object table located on said object node;

(h) transmitting, by said selected home node, each said hashed object feature
of said plurality of features to a respective one of said plurality of query
nodes indicated by said first portion of each said hashed object feature;

23

(i)

)

using, by said query node, said second portion of said respective hashed
object feature to store data according to a local hash table located on said
query node; and

applying, by said query node, any applicable ontology mappings to said
hashed object feature and storing data in said local hash table located on
said query node.

18. The method of claim 17 further comprising the step of receiving, at said object
node, said object from said user, prior to the step of extracting features from
said object.

19. A distributed computer database system having an information retrieval tool
for handling queries from a user comprising:

(a)
(b)
(c)
(d)

(e)

a plurality of home nodes;
a plurality of query nodes; and
a plurality of object nodes;

said plurality of home nodes, said plurality of query nodes, and said plu-
rality of object nodes connected by a network.

wherein each said home node, upon receiving a query from a user, extracts
a plurality of features and a plurality of target ontology identifiers from
said query, hashes each said query feature of said plurality of query features
into a hashed query feature having a first portion and a second portion,
and transmits each said hashed query feature and said plurality of target
ontology identifiers to a respective one of said plurality of query nodes
indicated by said first portion of said hashed query feature,

further wherein each said query node uses said second portion of said
hashed query feature to access data according to a local hash table located
on said query node, said data consisting of a plurality of object identifiers
and a plurality of hashed features, returns said plurality of object iden-
tifiers to said home node and transmits said each hashed feature of said
plurality of hashed features and said plurality of target ontology identifiers
to a respective one of said plurality of query nodes indicated by said first
portion of each said hashed feature,

further wherein the said home node, upon receiving a plurality of object
identifiers from each said query node, divides each said object identifier of
said plurality of object identifiers into a first portion and a second portion,
and transmits each said object identifier to a respective one of said plurality
of object nodes indicated by said first portion of said object identifier, and

24

(h)

further wherein each said object node uses said second portion of said
object identifier to access data according to a local object table located on
said object node and returns said accessed data to said home node.

20. The distributed computer database system of claim 19 wherein said home node
determines a measure of similarity between said accessed data and said query
and returns to said user accessed data having a predetermined degree of simi-
larity.

21.

22.

The method of claim 20 wherein said home node measures similarity using a
similarity function determined by:

(a)
(b)
(c)

features possessed by both the said accessed data and the said query;
features possessed only by the said query; and

features possessed only by said accessed data.

A distributed computer database system for storage and retrieval of information
objects or locations of information objects, comprising

(a)
(b)
(c)
(d)

(e)

a plurality of home nodes;
a plurality of object nodes; and
a plurality of query nodes;

said plurality of home nodes, said plurality of object nodes and said plu-
rality of query nodes connected by a network.

wherein each said home node, upon receiving an object from a user, selects
a unique object identifier having a first portion and a second portion,
extracts a plurality of features from said object, hashes each said object
feature of said plurality of object features into a hashed object feature
having a first portion and a second portion, transmits the location of the
said object, the said plurality of hashed object features of the said object
and any auxiliary information about the said object, to a respective one of
said plurality of object nodes indicated by said first portion of said object
identifier, and transmits each said hashed object feature to a respective
one of said plurality of query nodes indicated by said first portion of said
hashed object feature,

wherein the said object node uses said second portion of said object iden-
tifier to store the location of the said object, the said plurality of hashed
object features and auxiliary information about the said object, according
to a local table located on said object node, and

25

(2)

wherein each said query node uses said second portion of said hashed object
feature to store objects or locations of objects and hashed features defined
by ontology mappings, according to a local hash table located on said query
node.

23. A distributed computer database system having an information retrieval tool
for handling queries from a user, comprising:

(a
(b
(c
(d

a plurality of home nodes;
a plurality of query nodes; and
a plurality of object nodes;

said plurality of home nodes, said plurality of query nodes and said plu-
rality of object nodes connected by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

a query task enqueued being resultant in, in response to a query command
from said user, extracting a plurality of features and a plurality of target
ontology identifiers from a query contained in said query command, hash-
ing each said query feature of said plurality of query features into a hashed
query feature having a first portion and a second portion, and transmit-
ting a query message containing each said hashed query feature and said
plurality of target ontology identifiers to a respective one of said plurality
of query nodes indicated by said first portion of said hashed query feature,

said query node, upon receipt of said query message, using said second
portion of said hashed query feature to access data, consisting of a plurality
of hashed features and a plurality of object identifiers, each said object
identifier having a first portion and a second portion, according to a local
hash table located on said query node, transmitting a message returning
the said plurality of object identifiers corresponding to said accessed data
to said home node, and for each hashed feature of said plurality of hashed
features, transmitting a message containing said hashed feature and said
plurality of target ontology identifiers to a respective one of said plurality
of query nodes indicated by said first portion of said hashed feature.

said home node, upon receipt of said message containing said plurality of
object identifiers, transmitting an object message containing each said ob-
ject identifier to a respective one of said plurality of object nodes indicated
by said first portion of said object identifier,

said object node, upon receipt of said object message, using said second
portion of said object identifier to access data according to a local object

26

24.

25.

26.

27.

table located on said object node and transmitting a message returning
the location of the object, the plurality of hashed object features of said
said object and auxiliary information associated with the said object, cor-
responding to said accessed data to said home node.

The method of claim 23 wherein said query message requests predetermined
data from said query node in response to a query and query level contained in
said query command from said user.

The method of claim 24 wherein there are two query levels.

The method of claim 25 wherein said query node returns a plurality of locations
of objects and auxiliary data in response to a predetermined query level.

A distributed computer database system for storage and retrieval of information,
comprising:

(a
(b
(c

)
)
)
(d)

(e)
(f)

a plurality of home nodes;
a plurality of object nodes; and
a plurality of query nodes;

said plurality of home nodes, said plurality of object nodes and said plu-
rality of query nodes connected by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

an insert task enqueued, in response to an insert command from said user,
selecting a unique object identifier having a first portion and a second
portion, for the object contained in said insert command, extracting a
plurality of features from said object, hashing each said object feature of
said plurality of object features into a hashed object feature having a first
portion and a second portion, transmitting an object message containing
the location of the said object, the said plurality of hashed object features
and auxiliary information about the said object to a respective one of
said plurality of object nodes indicated by said first portion of said object
identifier, and transmitting an insert message containing each said hashed
object feature to a respective one of said plurality of query nodes indicated
by said first portion of said hashed object feature,

said object node, upon receipt of said object message, using said second
portion of said object identifier to store data according to a local table
located on said object node,

27

28.

29.

30.

(h) said query node, upon receipt of said insert message, using said second
portion of said hashed object feature to store data according to a local
hash table located on said query node, and using any ontology mappings
applicable to said hashed object feature to store data in said local hash
table located on said query node.

A method of storing ontology mappings in a manner which is conducive to infor-
mation retrieval using fuzzy queries in a distributed computer database system
having a plurality of home nodes and a plurality of query nodes connected by
a network, said method comprising the steps of:

(a) selecting a first one of said plurality of home nodes;

(b) transmitting, by said selected home node, said ontology mapping to said
plurality of query nodes;

(c) using, by said query node, said ontology mapping to map all features to
which said ontology mapping is applicable and which are stored in a local
hash table located on said query node; and

(d) storing said ontology mapping in a local ontology mapping table located
on said query node.

The method of claim 28 further comprising the step of receiving, at said home
node, said ontology mapping from said user, prior to the step of transmitting
said ontology mapping to said home node.

A distributed computer database system for storage and retrieval of information
objects or locations of information objects, comprising

(a) a plurality of home nodes; and
(b) a plurality of query nodes;

(c) said plurality of home nodes and said plurality of query nodes connected
by a network.

(d) wherein each said home node, upon receiving an ontology mapping from a
user, transmits said ontology mapping to a respective one of said plurality
of query nodes, and

(e) wherein each said query node uses said ontology mapping to map all fea-
tures to which said ontology mapping is applicable and which are stored in
a local hash table located on said query node, and to store said ontology
mapping in a local ontology mapping table located on said query node.

28

31. A distributed computer database system for storage and retrieval of information,
comprising:

(a)
(b)
(c)

a plurality of home nodes; and
a plurality of query nodes;

said plurality of home nodes and said plurality of query nodes connected
by a network.

each said home node, upon receiving a command from a user, enqueuing
a predetermined task in response to said command,

an ontology mapping task enqueued, in response to an ontology mapping
command from said user, transmitting an ontology mapping message to
said plurality of query nodes,

said query node, upon receipt of said ontology mapping message, mapping
all features to which said ontology mapping is applicable and which are
stored in a local hash table located on said query node, and storing said
ontology mapping in a local ontology mapping table located on said query
node.

29

102
User
N7
NS 104
Query ™

KN \Response

S 8

_8

106

Home Nodd

1/5

105
Front End Nodes

g 1S

107
Home Nodes

_8

_8

108
Local Area Network

9| 1S

109
Query Nodes

g 1S

110
Object Nodes

FIG. 1

21

216hashed
fragment

219

5
Home Node

Query Node |

2/5

21Thashed
fragment

220hashed fragment 23

I~
Query Node

ZISOID

2 At of OIDs **9

22401D

230

Node

223hashed fragment

221 OID

W

Object Node

information

241

Front End

= Front End

Object Nod

234object

information 235,h;ect

information

Level 3 Service

FIG. 2

(Step 201)

(Step 202)

(Step 203)

(Step 204)

(Step 205)

Basic Service

(Step 206)

(Step 207)

228Response

(Step 208)

Level 2 Service

(Step 209)

307

309

Home Node
311hashed
310hashed
fragment
313 / information 314
Query Node . Query Node
315 N
‘Object Node
FIG. 3
407
User|
106 406 ontology mediation
Front End|
408 ot
at0 | ontology mediation
Home Node
1lmediation 412medjation
413 / 414
Query Node Query Node

308

3/5

306
User |

3055bject

Front End

object

FIG. 4

(Step 301)

(Step 302)

(Step 303)

(Step 401)

(Step 402)

(Step 403)

(Step 404)

Query Message

Query Response Message

Object Message

Object Response Message

Insert Message

4/5

502 503 504 505
Header QID HQF Value
506
Target KIDs. ..
FIG. 5a
507 508 509 510
Header QID OID Weight
FIG. 5b
511 512 513
Header QID OID
FIG. 5¢
514 515 516 517
Header QID OID Location
518
Features. ..
519
FIG. 5d
520 521 522 523
Header OID HQF Value
524

Target KIDs. ..

FIG. 5e

Insert Object Message

Mediation Message

5/5

525

Header

526

OID

527

Location

528

Features. ..

529

FIG. 5f

530

Header

531

MT

532

KID1

533

KID2

534

Feature Mapping

FIG. 5g

