Knowledge Extraction System and Method

Kenneth Baclawski, Waltham, MA

Abstract

A distributed computer database system including one or more front end computers
and one or more computer nodes interconnected by a network into a data warehouse
and data mining engine which indexes objects including images, sound and video
streams, as well as plain and structured text.

An object from an external database is downloaded by a node, termed the ware-
housing node. The warehousing node extracts some features from the object and
hashes these features. Each hashed feature is transmitted to one node on the net-
work. Each node on the network which receives a hashed feature uses the hashed
feature of the object to perform a search on its respective partition of the database.
The results of the searches of the local databases are gathered by the warehousing
node. The warehousing node uses these results to determine whether the object has
already been indexed in the data warehouse. The warehousing node then extracts
all the features from the object and hashes these features. Each hashed feature is
transmitted to one node on the network. Each node on the network which receives
a hashed feature uses the hashed feature of the object to store the feature in its
respective partition of the database.

A pattern query is a search for a pattern in the data. A pattern query from a user
is transmitted to one of the front end computers which forwards the pattern query to
one of the computer nodes, termed the home node, of the data mining engine. The
home node decomposes the pattern query into query steps, each step consisting of an
object feature and a computation. The computation may involve additional query
steps. The home node hashes the features. Each query step is transmitted to one
node on the network, according to the hashed feature. Each node on the network
which receives a query step uses the hashed feature of the query step to perform a
search on its respective partition of the database, and the accessed data is used by the
computation of the query step. If the computation of a query step contains additional
query steps, then the additional query steps are evaluated recursively, and the data
obtained by the recursive evaluation is used by the computation of the query step.
The results of the searches of the local databases and the results of any recursive
evaluations are gathered by the home node. The results of the pattern query are
determined by the home node and returned to the user.

References

[1] L. Aiello, J. Doyle, and S. Shapiro, editors. Proc. Fifth Intern. Conf. on Principles
of Knowledge Representation and Reasoning. Morgan Kaufman Publishers, San
Mateo, CA, 1996.

[2] K. Baclawski. Distributed computer database system and method, December
1997. United States Patent No. 5,694,593. Assigned to Northeastern University,
Boston, MA.

[3] A. Del Bimbo, editor. The Ninth International Conference on Image Analysis and
Processing, volume 1311. Springer, September 1997.

[4] N. Fridman. Knowledge Representation for Intelligent Information Retrieval in
Experimental Sciences. PhD thesis, College of Computer Science, Northeastern
University, Boston, MA, 1997.

[6] M. Hurwicz. Take your data to the cleaners. Byte Magazine, January 1997.

[6] Y. Ohta. Knowledge-Based Interpretation of Outdoor Natural Color Scenes. Pit-
man, Boston, MA, 1985.

[7] A. Tversky. Features of similarity. Psychological review, 84(4):327-352, July 1977.

[8] S. Weiss and N. Indurkhya. Predictive Data Mining: A Practical Guide. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1998.

[9] J.-L. Weldon and A. Joch. Data warehouse building blocks. Byte Magazine,
January 1997.

1 Field of the Invention

The invention relates to computer database systems and more specifically to dis-
tributed computer database systems.

2 Background of the Invention

Organizations routinely collect large amounts of data on their customers, products,
operations and business activities. Insights buried in this data can contribute to
marketing, reducing operating costs and strategic decision-making. For example, if
there is a strong correlation between the customers who buy one product with those

who buy another product, then those customers who have bought just one of them
might be good prospects for buying the other product.

Analytical processing of data is primarily done using statistical methods to extract
correlations and other patterns in the data. This kind of processing has been variously
called data mining, knowledge discovery and knowledge extraction. A search for a
specific pattern or kind of pattern in a large collection of data will be called a pattern
query.

Large enterprises maintain many databases, many of which are transactional
databases. The requirements of these databases are often in conflict with the require-
ments of data mining. Transactional databases are updated using small transactions
operating in real time. Data mining, on the other hand, uses large pattern queries
that do not have to take place in real time. To resolve this conflict, it is now common
for data from a variety of sources to be downloaded to a centralized resource called a
data warehouse.

The downloading and centralizing of data from diverse sources requires a number
of tasks. The data must be extracted from the sources, transformed to a common,
integrated data model, cleansed to eliminate or correct erroneous or inaccurate data
and integrated into the central warehouse. In addition, one must ensure that every
instance of every business entity, such as a customer, product or employee, has been
correctly identified. This is known as the problem of referential integrity. All of these
are difficult tasks, especially ensuring referential integrity when the data is being
downloaded from databases that identify the business entities in slightly different
ways. Current technology downloads data to the data warehouse as an independent
activity from data mining. In contrast with data mining, for which there is a large
research literature and many commercial products, data warehousing does not have
a strong theoretical basis and few good commercial products.

Because data warehouses integrate many diverse data sources, it is necessary to
specify an integrated data model for the data warehouse as well as a data mapping
that extracts, transforms and cleanses data from each data source. Experience has
shown that richer data models, such as object-oriented data models, are better suited
for defining such an integrated data model and for defining the data mappings, than
more limited data models, such as the relational model. Yet most data warehouses
still use a flat record structure such as the relational model. Relational databases have
a very limited data structure, so that synthesizing more complex data structures is
awkward and error-prone. Some of the kinds of data that are poorly suited to storage
in a relational database include: textual data in general, hypertext documents in
particular, images, sound, multimedia objects and multi-valued attributes. Relational
databases are also poorly suited for representing records that have a very large number
of potential attributes, only a few of which are used by any given record.

An object database consists of a collection of data or information objects. Each

information object is identified uniquely by an object identifier (OID). Each infor-
mation object can have features, and some features can have an associated values.
Information objects can also contain or refer to other information objects.

To assist in finding information in a database, special search structures are em-
ployed called inderes. Large databases require correspondingly large index structures
to maintain pointers to the stored data. Such an index structure can be larger than
the database itself. Current technology requires a separate index for each attribute
or feature. This technology can be extended to allow for indexing a small number of
attributes or features in a single index structure, but this technology does not func-
tion well when there are hundreds or thousands of attributes. Furthermore, there is
considerable overhead associated with maintaining an index structure. This limits the
number of attributes or features that can be indexed, so the ones that are supported
must be chosen carefully. For transactional databases, the workload is usually well
understood, so it is possible to choose the indexes so as to optimize the performance
of the database. For a data warehouse, there is usually no well defined workload, so
it is much more difficult to choose which attributes to index.

3 Summary of the Invention

The present invention combines the two activities of data warehousing and data
mining, thereby improving the basis and support for data warehousing. The term
knowledge extraction will be used for the integration of the data warehousing and
data mining activities. The present invention supports the indexing of sparse records
which have large numbers of potential attributes, only a few of which are used in a
particular record. The present invention supports the indexing of very large numbers
of attributes in a uniform data structure, making it much easier to determine the
workload characteristics necessary for achieving high performance.

The invention relates to a distributed computer database system which includes
one or more front end computers and one or more computer nodes interconnected by a
network. The combination of computer nodes interconnected by a network operates as
a knowledge extraction engine, simultaneously supporting both the data warehousing
activity and the data mining activity.

First consider the data warehousing activity. The downloading of objects from
another database to the warehouse is performed by a warehousing node. For an
object downloaded from another database, the warehousing node must first determine
whether the object might already be represented in the data warehouse due to a
download from another database. If this might be the case, the warehousing node
extracts some of the features of the object and then hashes these features. A portion
of each hashed feature is used by the warehousing node as an addressing index by

which the warehousing node transmits the hashed object feature to a node on the
network.

Each node on the network which receives a hashed object feature uses the hashed
object feature to perform a search on its respective database. Nodes finding data
corresponding to the hashed object feature return the OIDs of the warehoused objects
possessing this feature. Such OIDs are then gathered by the warehousing node and a
similarity function is computed. The similarity function is used to determine whether
the object is already stored in the data warehouse. If the object is determined to be
represented in the data warehouse, then the OID of the warehoused object is used for
the downloaded object. If it is not already represented, then a unique OID is chosen
for the object.

The warehousing node then extracts all of the features of the object and then
hashes these features. A portion of each hashed feature is used by the warehousing
node as an addressing index by which the warehousing node transmits the hashed
object feature to a node on the network where the feature is stored in the data
warehouse.

Next consider the data mining activity. A user wishing to search for a pattern
in the data transmits a pattern query to one of the front end computers which in
turn forwards the pattern query to one of the computer nodes of the network. The
node receiving the pattern query, termed the home node of the data warehouse,
decomposes the pattern query into query steps. A query step consists of a feature
and a computation which may include additional query steps. The home node then
hashes the features of the query steps. A portion of each hashed feature is used by
the home node as an addressing index by which the home node transmits the query
step to a node on the network.

Each node on the network which receives a query step uses the hashed query
step feature to perform a search on its respective database. Nodes finding data
corresponding to the hashed query step feature, perform the computation specified in
the query step. If the computation does not contain any additional query steps, then
the results of the computation are returned to the home node. If the computation
does contain additional query steps, then the node takes the role of the home node
with respect to the query steps contained in the computation. In particular, the node
hashes the features of the contained query steps and transmits the query steps to
other nodes. This process continues recursively until the computation is complete
and the final results are returned to the original home node.

Upon receiving the results of the computation, the home node performs any re-
maining data aggregation specified by the original pattern query and transmits the
information to the front end node. The front end node formats the response to the
user, and transmits the formatted response to the user.

4 Description of the Drawings

This invention is pointed out with particularity in the appended claims. The above
and further advantages of the invention may be better understood by referring to the
following description taken in conjunction with the accompanying drawing, in which:

FIG. 1 is a block diagram of an overview of an embodiment of the distributed com-
puter database system of the invention;

FIG. 2 is an overview of the steps used by the embodiment of the distributed com-
puter database system to download information from another source to the data
warehouse;

FIG. 3 is an overview of the steps used by the embodiment of the distributed com-
puter database system to respond to a pattern query.

FIG. 4 specifies the formats of the messages transmitted between the nodes of the
distributed computer database system.

The remaining diagrams are block diagrams of the modules that perform the tasks
of the invention within each node.

5 Detailed Description of the Preferred Embodi-
ment

Referring to FIG. 1, in broad overview, one embodiment of a distributed computer
database system of the invention includes a user computer which is in communication
with a front end computer through a network. The front end computer, which may
also be the user computer, is in turn in communication with a data warehouse and
data mining engine which includes one or more computer nodes interconnected by a
local area network. The individual computer nodes may include local disks, or may,
alternatively or additionally, obtain data from a network disk server.

The computer nodes of the data warehouse may be of several types, including
index nodes and warehousing nodes. The nodes of the data warehouse need not
represent distinct computers. In one embodiment, the data warehouse consists of a
single computer which takes on the roles of all index nodes and warehousing nodes.
In another embodiment, the data warehouse consists of separate computers for each
index node and warehousing node. Those skilled in the art will realize many variations
are possible which will still be within the scope and spirit of the present invention.

Considering the downloading of an object first, and referring also to FIG. 2, in one
embodiment objects are downloaded (Step 201) by one or more warehousing nodes.

If an object may already be represented in the data warehouse due to a download
from another database, the warehousing node extracts some of the features of the
object which have been determined to be useful for this purpose, according to the
integrated data model of the data warehouse.

A variety of feature extraction techniques can be used. For traditional field val-
ues, the possible values are partitioned into a collection of contiguous, non-overlapping
ranges. Partitioning field values in this way is called discretization. Note that mem-
bership in one of these ranges is indexed; the field value itself is not indexed. If a
different discretization must be used, then the field values must be indexed again
using the discretization. Both discretizations may be used at the same time, or the
new discretization can replace the other.

Features are extracted from structured documents by parsing the document to
produce a data structure, then dividing this data structure into (possibly overlapping)
substructures called fragments. The fragments of a structured document are the
features extracted from the document. The fragment of a query step is used to find
matching fragments in the database, so is is called a probe. This same terminology
will be used for features extracted from other kinds of objects as well.

Features extracted from unstructured documents are organized into a data struc-
ture consisting of a collection of inter-related knowledge frames. The knowledge frame
data structure is then divided into (possibly overlapping) substructures, as in the case
of a structured document, and these substructures are the features of the unstructured
document.

A large variety of feature extraction algorithms have been developed for media
such as sound, images and video streams. Fourier and Wavelet transformations as
well as many filtering algorithms are used. Features can also be added to an ob-
ject by manual or semi-automated means. Such added features are referred to as
annotations or meta-data. Features are extracted from annotations using one of the
techniques mentioned above, depending on whether the annotation is a relational
database record, a structured document or an unstructured document. If a feature
has a value associated with it, then it must be discretized. One can also specify rela-
tionships between features. For example, one feature can be contained within another
feature or be adjacent to another feature. The integrated data model specifies the
feature extraction algorithms as well as the structure of the features.

The warehousing node encodes each feature of the object by using a predefined
hashing function. Data in the system was previously stored locally on the various
index nodes using this hashing function to generate an index to the data in the local
database. Thus, the use of the same hashing function to generate an index for data
storage and to generate hashed probes for an object assures that data is distributed
uniformly over the index nodes of the data warehouse during the storing of data.

In one embodiment, the hash value resulting from the use of the hashing function

has a first portion which serves to identify the index node to which the data is to be
sent to be stored or to which a feature is to be sent as a probe, and a second portion
which is the local index value which is used to determine where data is to be stored
at or retrieved from the index node. Thus, the hashed object features are distributed
(Step 202) as probes to certain index nodes of the data warehouse, as determined by
the first portion of the hash value.

The index nodes whose probes match the hashed features by which the data
was initially stored on that index node respond to the query step by transmitting
(Step 203) the OIDs matching the hashed features of the requested information to
the warehousing node. Thus all matches between the hashed probes and the local
hash table of hashed features are returned or gathered to the warehousing node which
initially hashed the object features.

The warehousing node then determines whether one of the OIDs represents the
same object as the object to be warehoused. This determination is made by the
warehousing node by comparing the degree of similarity between the object to be
warehoused and the objects whose OIDs were returned. In one embodiment the
measure of similarity is determined by

1. the features that are common to the objects, and

2. the features of the object to be warehoused that are not features of the object
whose OID was returned.

This measure of similarity is based on the Feature Contrast Model of Tversky. The
first term contributes a positive number to the similarity value, while the second term
has a negative contribution. In addition the second term is multiplied by a predefined
constant such that a feature in the second set has less effect on the similarity than
one in the first set.

If the object is determined to be represented in the data warehouse, then an OID
is already available for the object. If it is not already represented, then a unique OID
is chosen for the object.

The warehousing node then extracts all of the features of the object according to
the integrated data model of the data warehouse. The feature extraction techniques
were discussed above. The warehousing node encodes each feature of the object by
using a predefined hashing function as discussed above. In one embodiment, the hash
value resulting from the use of the hashing function has a first portion which serves
to identify the index node to which the data is to be sent to be stored (Step 204),
and a second portion which is the local index value which is used to determine where
data is to be stored at the index node (Step 205).

Considering next the processing of a pattern query, and referring also to FIG. 3,
in one embodiment when a user transmits (Step 301) a pattern query from the user

computer, the front end computer receives the pattern query. The front end computer
is responsible for establishing the connection with the user computer to enable the
user to transmit a pattern query and to receive a response in an appropriate format.
The front end computer is also responsible for any authentication and administrative
functionality. In one embodiment, the front end computer is a World Wide Web
server communicating with the user computer using the HT'TP protocol.

After verifying that the pattern query is acceptable, the front end computer per-
forms any reformatting necessary to make the pattern query compatible with the
requirements of the data warehouse. The front end computer then transmits the pat-
tern query to one of the index nodes of the data warehouse (Step 302), which is then
defined as the home node of the data warehouse for that pattern query.

The home node decomposes the pattern query into a series of query steps. Each
query step consists of a feature and a computation. The computation determines what
action the query step is to perform. The most common computations are statistical
functions that aggregate information stored in the data warehouse. The computation
may contain additional query steps.

For each query step, the home node encodes the feature by using a predefined
hashing function as described above. The hashed feature and query step are trans-
mitted by the home node to an index node (Step 303) using the hashed feature as
described above.

Index nodes whose hashed features match the index features by which the data was
initially stored on that index node respond to the query step by retrieving data in the
local hash table of index terms that match the hashed feature and by performing the
computation specified in the query step. If the computation contains any additional
query steps, then the index node acts as the home node for a new pattern query,
called a subquery, which is processed as described above (Step 304). Whether the
computation contains additional query steps or not, the index node returns the results
of its computation to the home node of the query step that it received (Step 305).

When the results of all the query steps of the original pattern query have been
received, the home node performs any data aggregation specified by the original
pattern query and returns the pattern information to the user. In one embodiment
the returned pattern information is transmitted to the front end (Step 306) computer
which formats the response appropriately and transmits the response to the user
(Step 307). In another embodiment the information to be returned is transmitted
directly to the user computer by way of the network without the intervention of the
front end computer.

Considering next the message formats used in the preferred embodiment, refer to
FIG. 4. The Warehouse Message four fields: Header, Object Identifier (QID), Hashed
Object Fragment (HOF) and Value. The Header field specifies that this message is
a Warehouse Message and also specifies the destination index node. The destination

index node is determined by the first portion of the hashed object fragment. The OID
field contains an object type specifier and an object identifier. The HOF field contains
a fragment type specifier and the second portion of the hashed object fragment pro-
duced by the Hashing Module. The Value field contains an optional value associated
with the fragment. The fragment type specifier determines whether the Warehouse
Message contains a Value field, and if the Warehouse Message does contain a Value
field then the fragment type specifier determines the size of the Value field.

The Warehouse Response Message has two parts: Identifier and Values. The
Identifier part has four fields: Header, OID1, OID2 and Weight. The Header field
specifies that this message is a Warehouse Response Message and also specifies the
destination warehouse node. The destination warehouse node is the warehouse node
from which the corresponding Warehouse Message was received. The two OID fields
contain an object type specifier and an object identifier. The first OID field is the
same as the OID field of the corresponding Warehouse Message. The second OID
field identifies an object that has been previously indexed. The Weight field contains
an optional weight associated with the object identified by OID1. The object type
specifier of OID1 determines whether the Warehouse Response Message contains a
Weight field, and if the Warehouse Response Message does contain a Weight field
then the object type specifier of OID1 determines the size of the field. The Values
part of the Warehouse Response Message contains data associated with the object
identified by OID2. The structure and size of the Values part is determined by the
object type specifier of OID2.

The Insert Message has four fields: Header, OID, HOF and Value. The Header
field specifies that this message is an Insert Message and also specifies the destination
index node. The destination index node is determined by the first portion of the
hashed object fragment. The OID field contains an object type specifier and the
object identifier. The HOF field contains a fragment type specifier and the second
portion of the hashed object fragment produced by the Hashing Module. The Value
field contains an optional value associated with the fragment. The fragment type
specifier determines whether the Insert Message contains a Value field, and if the
Insert Message does contain a Value field then the fragment type specifier determines
the size of the Value field.

The Query Step Message has two parts: Identifier and Subqueries. The Identifier
part has four fields: Header, Query Step Identifier (QSID), Hashed Query Fragment
(HQF) and Value. The Header field specifies that this message is a Query Step
Message and also specifies the destination index node. The destination index node is
determined by the first portion of the hashed query fragment. The QSID field contains
a query type specifier and a query step identifier. The HQF field contains a fragment
type specifier and the second portion of the hashed query step fragment produced by
the Hashing Module. The Value field contains an optional value associated with the

10

fragment. The fragment type specifier determines whether the Query Step Message
contains a Value field, and if the Query Step Message does contain a Value field then
the fragment type specifier determines the size of the Value field. The Subqueries part
of the Query Step Message contains a number of subqueries. A Query Step Message
having no subqueries is called a Simple Query Step Message.

The Query Step Response Message has two parts: Identifier and Values. The
Identifier part has two fields: Header and QSID. The Header field specifies that this
message is a Query Step Response Message and also specifies the destination index
node. The destination index node is the same as the the index node from which the
corresponding Query Step Message was received. The QSID field contains a query
type specifier and a query step identifier. The Values part of the Query Step Response
Message contains the result data of the query step. The structure of the Values part
is determined by the query type identifier.

Considering next the Communication Module contained in the computer nodes
used in the preferred embodiment, refer to Fig. 5 and 6. The Communication Module
is responsible for transmitting and receiving messages from one node to another. The
destination node for a message to be transmitted is specified in the Header field of
each message. When a message is received from another node, the type of message
determines which module will process the message. The message type is specified in
the Header field of each message.

The Communication Module of a home node is also responsible for communication
with the Front End nodes. A Front End node transmits pattern queries to the home
node, and the home node transmits results, such as graphs and formatted tables, to
the Front End node.

Considering next the modules contained in the warehousing nodes used in the
preferred embodiment, refer to Fig. 5. The Downloader scans external databases to
download objects for warehousing and indexing by the knowledge extraction engine.
Each warehousing node may have a different Downloader module. For example,
the Downloader can download data from relational databases using a standard SQL
protocol such as ODBC or a proprietary protocol defined by one of the relational
database vendors. Downloading in this case is performed using one or more SQL
queries. For another example, the Downloader can be an Information and Content
Exchange (ICE) subscriber that negotiates to obtain content from syndicators over
the Internet. This is the preferred mechanism for obtaining time-sensitive content
such as news feeds. The Downloader transfers objects to the Feature Extractor.

The Feature Extractor extracts features from an object. If the object is a rela-
tional database record, then feature extraction includes steps such as selecting the
fields that will be indexed, reformatting fields and eliminating or correcting data that
is determined to be erroneous. Feature extraction for images is performed by detecting
edges, identifying the image objects, classifying the image objects as domain objects

11

and determining relationships between domain objects. In another embodiment, fea-
ture extraction for images is performed by computing Fourier or wavelet transforms.
Each Fourier or wavelet transform constitutes one extracted feature. Features are
indexed by using a number of Insert Messages.

The Feature Extractor must also map each object identifier in an external database
to an object identifier of the knowledge extraction engine. Each external databases
can have its own mechanism for assigning object identifiers, and features of the same
object may be stored in each external database with a different object identifier.
For example, one external database might use a social security number. Another
external database might use an employee identifier. The mapping from external
object identifier to is achieved by using a number of Warehouse Messages.

The Fragmenter computes the fragments contained in each feature. Each fragment
consists of a bounded set of related components in the feature. In one embodiment,
the fragments of a feature consist of each attribute and each relationship in the data
structure defining the feature. For an object consisting of a relational database record,
the features are the attributes that were selected, reformatted and corrected by the
Feature Extractor. The fragments are transferred to the Hashing Module.

The Hashing Module computes a hash function of a fragment. In one embodiment,
the hash function is the MD4 message digest function. The Hashing Module transfers
either a Warehouse Message or an Insert Message to the Communication Module,
depending on whether the purpose of the fragment is to achieve an object identifier
mapping or to index an object feature, respectively.

The Similarity Comparator receives Warehouse Response Messages and produces
Insert Messages which are transferred to the Communication Module. The Similarity
Comparator gathers all the warehouse responses for an object whose identifier is being
mapped. For each object in the responses, the Similarity Comparator determines the
relevance of each object identifier returned in the search. This determination of
relevance is made by the warehousing node by comparing the degree of similarity
between the object whose identifier is being mapped and the objects whose OIDs
were returned. In one embodiment the measure of similarity between the query and
the object is a cosine measure and is given by the expression COS (v, w), where the
vector v denotes the query and the vector w denotes the object. These vectors are in
a space in which each fragment represents one dimension of the space. If a compatible
OID is found, then the OID will be used as the mapped object identifier, and the
OID is transferred to the Feature Extractor. If no compatible OID is found, then a
new object identifier is chosen and transferred to the Feature Extractor.

Considering next the modules contained in the index nodes used in the preferred
embodiment, refer to Fig. 6. The Fragment Table receives Warehouse Messages, Insert
Messages and Simple Query Step Messages. In the case of a Warehouse Message the
Fragment Table retrieves an entry in the local hash table using the hash value in the

12

HOF field. The type specifier in the HOF field and the entry in the local hash table
are transferred to the Fragment Comparator. In the case of a Simple Query Step
Message the Fragment Table retrieves an entry in the local hash table using the hash
value in the HQF field. The entry in the local hash table are returned to the Query
Processor using a Query Step Response Message. In the case of an Insert Message,
the Fragment Table modifies an entry in the local hash table by adding the OID and
Value fields of the Insert Message to the entry in the local hash table.

The Fragment Comparator receives entries from the Fragment Table. A compar-
ison function is determined by the HOF type specifier that was transferred from the
Fragment Table. The comparison function is used to determine the relevance of the
OID and Value fields in the entry that was transferred from the Fragment Table. In
one embodiment, the comparison function determines a similarity weight, and the
OIDs having the highest similarity weight are deemed to be relevant. The relevant
OIDs and their similarity weights are transferred to the Communication Module using
a Warehouse Response Message.

The Query Parser parses a pattern query into a query computation tree. The
nodes of the query computation tree are either internal nodes or leaf nodes. An
internal node is a node having one or more child nodes. An internal node specifies
how the results of the child nodes are to be combined. A leaf node is a node having
no children. A leaf node is either a constant value or a query step. A query step can
have a number of subqueries. Each subquery is specified using a query computation
tree. The query computation tree is transferred to the Query Processor.

The Query Processor is responsible for administering the processing of pattern
queries. Upon receiving a query computation tree from the Query Parser, it assigns
a query identifier (QID) to the query, and it assigns a query step identifier (QSID)
to each leaf node that specifies a query step. A query step that has no subqueries is
called a simple query step. A query step is processed by transmitting a Query Step
Message to the specified index node by means of the Communication Module. The
Query Processor at the specified destination index node processes the Query Step
Message by transferring a Simple Query Step Message to the Fragment Table which
responds with a Query Step Response Message. The Query Processor then sends the
Query Step Response Message to the index node that originally sent the Query Step
Message. As a result, Query Processor modules both send and receive Query Step
Messages and Query Step Response Messages. As Query Step Response Messages are
received, the processing specified in the query computation tree is performed. When
a query step has a subquery, the subquery requires the processing of additional query
steps. When the entire pattern query has been computed, the results are formatted
and transmitted to the front end from which the pattern query was received. For
example, the results may be given as a graph or table.

13

6 Claims

Having shown the preferred embodiment, those skilled in the art will realize many
variations are possible which will still be within the scope and spirit of the claimed

invention.

Therefore, it is the intention to limit the invention only as indicated by

the scope of the claims.
What is claimed is:

1. A method of warehousing objects or locations of objects in a manner which is
conducive to knowledge extraction using pattern queries in a distributed com-
puter database system having a plurality of index nodes and a plurality of
warehousing nodes connected by a network, said method comprising the steps

of:
(a)

(b)

(c)

extracting, by a warehousing node, a first plurality of features from an
object downloaded from another database;

hashing, by said warehousing node, each said object feature of said first
plurality of object features, said hashed object feature having a first portion
and a second portion;

transmitting, by said warehousing node, each said hashed object feature of
said first plurality of features to a respective one of said plurality of index
nodes indicated by said first portion of each said hashed object feature;

using, by said index node, said second portion of said respective hashed
object feature to access data according to a local hash table located on
said index node;

returning, by each said index node accessing data according to said respec-
tive hashed object feature, a plurality of object identifiers corresponding
to said accessed data to said warehousing node;

determining, by said warehousing node, whether the said object is to be
assigned an object identifier from the said plurality of object identifiers, or
the said object is to be assigned an object identifier that is not yet in use;

assigning, by said warehousing node, an object identifier to the said object
according to the said determination;

extracting, by said warehousing node, a second plurality of features from
said object;

hashing, by said warehousing node, each said object feature of said second
plurality of object features, said hashed object feature having a first portion
and a second portion;

14

()

(k)

transmitting, by said warehousing node, each said hashed object feature
of said second plurality of features to a respective one of said plurality
of index nodes indicated by said first portion of each said hashed object
feature;

using, by said index node, said second portion of said respective hashed
object feature to store data according to a local hash table located on said
index node.

2. The method of claim 1 further comprising the step of determining, by said
warehousing node, a measure of similarity between said accessed data and said
object; subsequent to the step of returning said first plurality of object identi-

fiers.

3. The method of claim 2 wherein said measure of similarity is determined by a
similarity function based on:

(a)
(b)

features possessed by both the said accessed data and the said object; and

features possessed only by the said object.

4. A method for data mining using pattern queries in a distributed computer
database system having a plurality of index nodes connected by a network, said
method comprising the steps of:

(a)
(b)

(c)

selecting a first one of said plurality of index nodes, herein termed the
home node of the pattern query;

extracting, by said home node, a plurality of query steps from a pattern
query by a user, each said query step consisting of a feature, a plurality of
query steps and a computation specification;

hashing, by said home node, said query step feature of each said query
step of said plurality of query steps, said hashed query step feature having
a first portion and a second portion;

transmitting, by said home node, each said hashed query step feature of
said plurality of query step features to a respective one of said plurality of
index nodes indicated by said first portion of each said hashed query step
feature;

using, by said index node, said second portion of said respective hashed
query step feature to access data according to a local hash table located
on said index node;

15

(f)

(h)

recursively evaluating, by said index node, each query step of said plurality
of query steps contained in said respective query step transmitted by said
home node, said index node acting as the home node of said query step of
said plurality of query steps;

computing, by said index node, pattern information according to said com-
putation specification of said respective query step transmitted by said
home node, according to said accessed data and pattern information deter-
mined by said recursive evaluation of each said query step of said plurality
of query steps contained in said respective query step transmitted by said
home node;

returning, by each said index node, said pattern information to said home
node.

5. The method of claim 4 further comprising the step of receiving, at said home
node, said pattern query from said user, prior to the step of extracting query
steps from said pattern query.

6. A distributed computer database system for warehousing of information objects
or locations of information objects, comprising

(a)
(b)
(c)

(d)

a plurality of warehousing nodes; and
a plurality of index nodes;

said plurality of warehousing nodes and said plurality of index nodes con-
nected by a network,

wherein each said warehousing node, upon downloading an object, extracts
a first plurality of features from said object, hashes each said object feature
of said first plurality of object features into a hashed object feature having
a first portion and a second portion, and transmits each said hashed object
feature to a respective one of said plurality of index nodes indicated by said
first portion of said hashed object feature,

wherein each said index node uses said second portion of said hashed ob-
ject feature to access data according to a local hash table located on said
index node, returning a plurality of object identifiers corresponding to said
accessed data to said warehousing node,

wherein said warehousing assigns to said object either one of said object
identifiers of said plurality of object identifiers or an object identifier that
is not yet in use, extracts a second plurality of features from said object,
hashes each said object feature of said second plurality of object features
into a hashed object feature having a first portion and a second portion,

16

and transmits each said hashed object feature to a respective one of said
plurality of index nodes indicated by said first portion of said hashed object
feature,

(g) wherein each said index node uses said second portion of said hashed object
feature to store objects or locations of objects according to a local hash
table located on said index node.

7. The distributed computer database system of claim 6 wherein said warehousing
node determines a measure of similarity between said accessed data and said
object for use in assigning an object identifier to said object.

8. The method of claim 7 wherein said warehousing node measures similarity using
a similarity function determined by:

(a) features possessed by both the said accessed data and the said object; and
(b) features possessed only by the said object.

9. A distributed computer database system having a data mining tool for handling
pattern queries from a user comprising:

(a) a plurality of index nodes;
(b) said plurality of index nodes connected by a network.

(c) wherein each said index node, upon receiving a pattern query from a user,
and termed the home node of said pattern query, extracts a plurality of
query steps from said pattern query, hashes the feature contained in each
said query step of said plurality of query steps into a hashed query step
feature having a first portion and a second portion, and transmits each
said hashed query step feature to a respective one of said plurality of index
nodes indicated by said first portion of said hashed query step feature,

(d) further wherein each said index node uses said second portion of said
hashed query step feature to access data according to a local hash table
located on said index node, recursively evaluates each query step contained
in said respective query step, computes pattern information according to
said accessed data and pattern information determined by said recursive
evaluation, and returns said pattern information to said home node.

10. A distributed computer database system for warehousing and data mining, com-
prising:

(a) a plurality of warehousing nodes; and

(b) a plurality of index nodes;

17

(c) said plurality of warehousing nodes and said plurality of index nodes con-
nected by a network,

(d) each said warehousing node, upon receiving a download command, enqueu-
ing a predetermined task in response to said download command,

(e) adownload task enqueued, in response to a download command, extracting
a first plurality of features from an object contained in said download
command, hashing each said object feature of said first plurality of object
features into a hashed object feature having a first portion and a second
portion, and transmitting a retrieve message containing each said hashed
object feature to a respective one of said plurality of index nodes indicated
by said first portion of said hashed object feature,

(f) said index node, upon receipt of said retrieve message, using said second
portion of said hashed object feature to access data according to a local
hash table located on said index node and transmitting a message returning
a plurality of object identifiers corresponding to said accessed data to said
warehousing node,

(g) said warehousing node, upon receipt of said plurality of object identifiers
from said plurality of index nodes, assigning to said object either one of
said object identifiers of said plurality of object identifiers or an object
identifier that is not yet in use, extracting a second plurality of features
from said object, hashing each said object feature of said second plurality
of object features into a hashed object feature having a first portion and
a second portion, and transmitting an insert message containing each said
hashed object feature to a respective one of said plurality of index nodes
indicated by said first portion of said hashed object feature,

h) said index node, upon receipt of said insert message, using said second
g g
portion of said hashed object feature to store data according to a local
hash table located on said index node.

11. The distributed computer database system of claim 10 wherein said warehousing
node determines a measure of similarity between said accessed data and said
object for use in assigning an object identifier to said object.

12. The method of claim 11 wherein said warehousing node measures similarity
using a similarity function determined by:

(a) features possessed by both the said accessed data and the said object; and
(b) features possessed only by the said object.

18

13. A distributed computer database system having a data mining tool for handling
pattern queries from a user, comprising:

(a)
(b)
(c)

(d)

a plurality of index nodes;
said plurality of index nodes connected by a network.

each said index node, upon receiving a command from a user, said index
node termed the home node of the command, enqueuing a predetermined
task in response to said command,

a pattern query task enqueued being resultant in, in response to a pattern
query command from said user, extracting a plurality of query steps from
a pattern query contained in said pattern query command, hashing the
feature contained in each said query step of said plurality of query steps
into a hashed query step feature having a first portion and a second portion,
and transmitting a query step message containing each said hashed query
step feature to a respective one of said plurality of index nodes indicated
by said first portion of said hashed query step feature,

said index node, upon receipt of said query step message, using said second
portion of said hashed query step feature to access data according to a lo-
cal hash table located on said index node recursively evaluating each query
step contained in said respective query step, computing pattern informa-
tion according to said accessed data and pattern information determined
by said recursive evaluation, and transmitting a message returning said
pattern information to said home node.

14. The method of claim 13 wherein said pattern query message requests predeter-
mined data from said index node in response to a pattern query contained in
said pattern query command from said user.

19

103

102

User

N7
N 104

1/4

105

N\
« > Response Front End Nodes

N\
Pattern Query ~¢ .~ =

= 1o O

_8

106 107

Home Nodd

Index Nodes

_8

Local Area Network

_8

109
Warehousing Nodes

110
External Servers

oy .

FIG. 1

2/4

207
| External Database |

Step 201
%8Object (Step)
209 /
Warehousing Node
211hashed
210 35hed feature (Step 202)
feature
213 215
Index Nodel Index Node
214
21201D OID (Step 203)
216 I
Warehousing Node
218hashed
217} 2ched feature (Step 204)
feature
219 226

Index Node| S Index Node (Step 205)
FIG. 2

3/4

310
User |

309pattern Query

311 v

Front End

312Pattern Query

313 /
Home Node

315 yyery

314query step
step
316 318query step 319
Index Node [C |Index Node

321 query step

317pattern

30
informatio pattern

information
322

Home

323pattern
information

325

Fronf End

324Response

326 |

User|
FIG. 3

(Step 301)

(Step 302)

(Step 303)

(Step 304)

(Step 305)

(Step 306)

(Step 307)

Warehouse Message

4/4

402

Header

403

OID

404

HOF

405

Value

Warehouse Response Message

Insert Message

FIG. 4a

406
Header

407

OID1

408

OID2

409

Weight

410

Values .

FIG. 4b

411

Header

412

413

OID

HOF

414

Value

Query Step Message

FIG. 4c

415

Header

416

QSID

417

HQF

418

Value

419

Subqueries ...

Query Step Response Message

FIG. 4d

420
Header

421

QSID

422
Values

FIG. 4e

