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ABSTRACT We give a stochastic process for which the
terms of the Rie zeta function occur as the probability
distributions of the elementary random variables of the pro-
cess.

Section 1. Introduction

As in ref. 1 we use the term process for a probability space
fl together with a parametrized family of random variables.
The purpose of this paper is to exhibit a process (Q), Z,)
parametrized by integers s > 1 such that the probability
distributions of the Zs are the terms of the Riemann zeta
function-i.e., Pr(Zs = n) = n-s(s)-l.

Section 2. The R~dei Zeta Function of an Inverse System

Let ({Ga:a E L},{4pa:G Ga}) be an inverse system of
finite groups over a lattice L. We will write 6 for the minimum
element of L, and we will assume that Go is a one-element
group. The profinite completion G = limGa has a unique
normalized Haar measure that we will denote Pr. We may
then regard G as a probability space.

If, in addition, we assume that the structure homomor-
phisms Oa are all surdective, then we can define a function
v on pairs of elements (a, /3) in L such that a ' /B, by the
formula v(a, /) = jCoker(4,0,)l, which then satisfies the
condition

for any triple a ' Sy ' a, v(a, /3) = v(a, y)v( y, /3).

A lattice with such a function is called a lattice ofDirichlet
type, and v is called its orderfunction. We abbreviate s4A a)
to v(a) = IGal.

Lattices of Dirichlet type were introduced in ref. 2, and for
such lattices a formal Dirichlet series was introduced called
the Redei zeta function. This function is defined by

p(s; L) = > 0, a)v(a)S
aEL

where ,u is the Mobius function of L (see ref. 3).
It is easy to check that inverse limits preserve products. In

particular, from the inverse system above one can form the
kth power inverse system

({Gk:a 8E L}, a(k) Gkno Gk )

whose limit will be denoted Gk. The lattices of the kth power
inverse systems are all isomorphic as lattices, but they differ
from one another as lattices of Dirichlet type. Let L(k) be the
lattice of Dirichlet type associated with the kth power inverse
system. It is easy to check that

p(s; L(k)) = p(sk; L), for every k . 1.

A lattice L with minimum element 6 is said to be homo-
geneous if

for every a E L, {/f E L3.-a} L.

The image of y E {3:8 >- a} in L via this isomorphism will be
written y/a.
A lattice L of Dirichlet type is said to be homogeneous if

L is homogeneous as a lattice and if in addition

for every a c P in L, v(/6/a) = v(/3)/v(a).

An inverse system ({Ga}, {lp,}) is said to be homogeneous
if the following conditions apply:

(i) The lattice of the inverse system is homogeneous.
(ii) For every a c P in L, Ker(4P,a) G/la.
(iii) The isomorphisms above commute with the structure

homomorphisms of the inverse system.
It is easy to check that the lattice of a homogeneous inverse
system is also homogeneous as a Dirichlet lattice.

Section 3. Mobius Inversion on an Infinite Lattice

We will use Mobius inversion on L, so it is useful to formalize
the basic convergence result we need.
THEOREM 1. Let P be a locally finite poset. Let g:P -* C be

afunction such that Yy-xg(y) converges absolutelyfor every x
E P. Write f(x) for the sum Xy-xg(y). If the double sum
YW:xypwux, w)g(y) converges absolutely for every x E P,
then Xy;jx, y)f(y) converges absolutely to g(x)for every x E
P.

Proof.: Absolutely convergent series are arbitrarily rear-
rangeable. Therefore

> "(x, w) >2g) = E g(y) (x, w),
W2x y-w y x yYw-x

for every x E P.

Now the left-hand side of the equation above is Xw2X4U(x,
w)f(w), while the right-hand side is 4,,:g(y)8(x, y) = &),
by definition of the Mobius function on a locally finite poset.
Absolute convergence clearly also holds. i
We now give an example of the use of Mobius inversion in

the setting of Section 2.
THEOREM 2. Let L be a homogeneous lattice ofDirichlet

type with orderfunction P. If
(i) IIL(O, a)j is bounded by a polynomial in v(a) ofdegree k

2 0, and
(ii) XaeLV(a)-s converges absolutely for Re(s) > so; then
(i) p(s; L) converges absolutely for Re(s) > so + k, and
(ii) p(s; L) (XaELV(a)-s) = 1, for Re(s) > so + k.
Proof: We first check conclusion i. By condition i, we have

that, for some constant C > 0,

I Igu(d, a)jjv(a)-sj c- CZ B(a)klP(a)-s
aEL aEL

a(e-Re(s)L
aEL
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By condition ii, the last expression above is finite for Re(s)
> so + k. This gives conclusion i by the definition of p.
To show conclusion ii, one proceeds as in the proof of

Theorem 1. Form the following double sum:

> p.(6, 13)V(13fsv(a)s
a,8EL

We first show that this double sum converges absolutely for
Re(s) > so + k by using the following bounds:

Ya IL(O, 80jjv0 ||sjj(a)-sj CY, Vp~kVpf-Re(s)v(a)-Re(s)
a,,8EL aP

C C> V(a)yRe(s)X V(I)k-Re(s)
a s

<00, for Re(s)>so+k.

The last bound above follows from the fact that both of the
series converge in the specified region by condition ii and
conclusion i. It follows that the double sum above may be
rearranged in any order. In particular, it follows that:

p,(0 f3)v(0t-3s(a)-s = > , B3)v(p)-sl, v(a)-s
a,PEL ,B a

a

for Re(s) > so + k.

On the other hand, by homogeneity of L, for each pair ad8 E
L, there is a unique y E L such that yv/3 = a. Moreover, for
this y we have v(a)v() = v(y). For a fixed ,(, a sum over all
a E L is then equivalent to a sum over y 2 13. Thus the double
sum can also be rearranged as follows:

E p.(O P)v(p8)-Sv(a)-S = E /(0', 3)E y(y)-s
BaEL , yu

= a(0, 7)V() (S

= V(6) s

=1, for Re(s) > so + k.

The theorem now follows. U

Section 4. A Stochastic Interpretation of the R6dei Zeta
Function

Let ({Ga}, {40,a}) be an inverse system as in Section 2 with
profinite completion G. Let Y be the random variable on G
with values in L U {oo} given by

supla E L:xC, =e},
Y(x) = if the supremum exists in L, and

00, otherwise,
where e denotes the identity element of the group Ga.
Similarly, let Y(t) for t - 1 be the corresponding random
variable on the tth power inverse system of ({Gj}, {4p,a}).
This sequence of random variables gives the following sto-
chastic interpretation of the Redei zeta function:
THEOREM 3. Let G be the profinite limit ofa homogeneous

inverse system over a lattice L, having associated random
variables y(t), where t > 0 is an integer. If L satisfies the
hypotheses ofTheorem 2 and ifPr(Y(t) = 6) > 0, for t > to,
then

Pr(Y(t) = aIY(t) # 00) = v(a)ftp(t; L), for t > max(to, so+k),

where k and so are specified by condition ii ofTheorem 2.
Proof: By homogeneity, we know that

Pr(Y(t) = a) = P(a)-Pr( = 6).

Hence

Pr(y(t) A 00) = E Pr(Y() - a)
aEL

= Pr(Y(t) = 6) 2 v(a)-t.
aEL

If t > to, then Pr(Y(t) = 6) > and hence also Pr(Y() # 00) >
0. So in this case we have

Pr(y(t) = ° Y(t) # 00) 2 v(a)f = 1, for t > to.
aEL

By Theorem 2 we may then conclude that

Pr(y(t) = 6IY(t) $ 00) = p(t; L), for t > max(to, so + k).

Finally, using homogeneity once more, we obtain the result
in general. U
The random variables YM') have the desired probability

distributions, but they are on different probability spaces. We
would like a single probability space that supports all ofthese
random variables in a natural way.
For an inverse system ({Ga}, {0p'la}) with profinite comple-

tion G, let G* denote the product of countably many copies
of G, i.e., HI=1G. For every positive integer t, let ir[1,tj:G-*
Gt denote the projection onto the first t components of Go.
Finally, let Zt:G0 -- C be the composition Y(t) 0 ir[ltl-
Because the probability measure on GX is Haar measure, and
hence the product measure, it follows that Y(f) and Z. have the
same distribution.
We summarize these considerations in the following:
COROLLARY 1. Given the hypotheses ofTheorem 3, there

is a probability space Gm and sequence ofrandom variables
Zt, for integers t > to, with values in L such that

Pr(Zt = aIZt # oo) = v(a)ftp(t; L), for t > max(to, so + k).

Section S. The Rienann Zeta Function

We now specialize to the following classical situation. Let L
= N be the lattice of positive integers ordered by divisibility.
The groups GQ are the cyclic groups Z/nZ, and the order
function is given by v(n) = n. The profinite completion is
known to be 2-Ilp pfim, Zp, where Zp is the ring of p-adic
integers. Note that the minimum element of N is 6 = 1. The
random variable Y(t) on it takes values in N U {X} and is
defined by

sup~n:x( ) = (2) =***=X"t) = el,
Y()(x) = if this supremum exists, and

00, otherwise.

We then have the following stochastic interpretation of the
Riemann zeta function:
THEOREM 4. For every integer s > 1, we have

Pr(Y(s) = n) = n-sC(s)-1.
Proof: First apply Theorem 3. Since the inverse system

defined above is obviously homogeneous, we must check that
the hypotheses of Theorem 2 hold and also that Pr(Y(-) = 6)
>0 for s > 1. Now the Mobius function ofN takes values +1
and 0, so the first hypothesis holds with k = 0. The sum
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IaELv(a)-s is, in this case, the sum defining the Riemann zeta
function i(s) = ln-S. This is known to converge for Re(s)
>so = 1.
To check that Pr(Y(s) = 1) > 0, we introduce the random

variables X on Zt by X(')(x) = xP E (Z/pZ)t, for every prime
p. Since Z' Ilp prime Zp, and since Pr is a Haar measure, the
Xp are independent random variables. Now Y(s) has value 0
= 1 if and only if every Xps) is, not the identity element of
(Z/pZ)s. Hence

Pr(Y(s) = 1) - H Pr(X(s) # e)
P

= H (1- p-)
P

= {(s)f1 for s > 1,

by a well-known product expansion for {(s) valid for Re(s)
> 1.

Therefore, by Theorem 3, we have that

Pr(Y(s) = njy(s) # oo) = n-s$(s)fl, for s > 1.

On the other hand, setting n = 1 in the formula above and
comparing it with the earlier unconditional probability com-
puted above yields the fact that Pr(Y(s) # m) = 1. The result
then follows.

We remark that one can show

Pr(Y(s) 0 oo) =0fs=1?: andPr(Y 7 ) {1, if s > 1.

This is consistent with the fact that (Y(s) = oa) is a "tail
event."
As in Corollary I of Section 4, we can restate Theorem 4

in terms of a process on a probability space. This gives the
result stated in Section 1:
COROLLARY 2. There is a probability measure on 2-, and

a sequence of random variables Zs on iX, for s > 1, such
that

Pr(Zs = n) = n`s(s)fl, for every s > 1.
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