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Abstract

Decision making is an important part of human activities, and is a very active
area of research. In this article, a formal framework for decision making is devel-
oped. At the heart of the framework is an ontology for the decision making pro-
cess that classifies both the kinds of data that are available for the decision making
process and the modes of reasoning that are used to develop situation awareness
and to make decisions. This ontology-driven framework resolves two outstand-
ing problems in decision making systems: providing a theoretical foundation and
declarative language support. Concerns are addressed such as providing for mul-
tiple notions of time, recording the activities used in decision making, and main-
taining the provenance of both data and activities. A process model is developed
that allows for flexible execution of the activities, including either synchronous or
asynchronous processing and for exploring alternative or concurrent branches at
any stage of the process. Detailed implementation techniques are presented. An
issue tracking system is used as a running example to illustrate the concepts being
developed. Use cases for the framework are given in a variety of domains including
customer support, healthcare, cloud services, and the Internet of Things.

Keywords: decision making, situation awareness, information fusion, customer ser-
vice, provenance, issue tracking systems

1 Introduction

The purpose of the Ontology Summit 2014 “Big Data and Semantic Web Meet Ap-
plied Ontology” was to build bridges between the Semantic Web, Linked Data, Big
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Data, and Applied Ontology communities. There was a special concern that ontologies
appear to have had little impact in Big Data applications, and one of the tracks of On-
tology Summit 2014 dealt specifically with Big Data. Big Data applications are often
characterized by the three V’s: Volume, Velocity and Variety. The last of these, Vari-
ety, was recognized as having the potential for significantly benefiting from a greater
use of ontologies, so it was the focus of the Big Data Track of Ontology Summit 2014
(Baclawski and Thessen, 2014). The process employed in Big Data makes use of
statistical techniques for discovery and hypothesis testing; in other words, it is a sci-
entific discovery process. One of the topics discussed in this track was the problem of
computer-based decision making. The purpose of this article is to expand on this topic
from the Big Data track at Ontology Summit 2014, by developing a bridge between
Big Data processes and the Semantic Web, Linked Data and Applied Ontology.

Decision making necessarily occurs within a context (or, more precisely, a situa-
tion) and requires that one have a purpose or goal that the decision making process is
intended to help achieve, although the goal is often implicit. The goal serves both to
direct the decision and to infer the facts that are relevant to the situation. Directing
the decision and inferring relevance may be regarded as proceeding at different lev-
els. The former occurs at the level of facts (A-box) while the latter occurs at a higher
level (T-box). Constructing the situation within which a decision will be made is called
“situation awareness.” It is “a motivated, continuous effort to understand connections
(which can be among people, places, and events) in order to anticipate their trajectories
and act effectively (Klein, Moon, & Hoffman, 2006a).”

Because decision making occurs on multiple levels, it is an active bidirectional
process of fitting data into a frame and fitting a frame around the data. A frame for
representing data is its schema. When enriched with formal semantics, a schema is an
ontology. Thus the process of situation awareness not only processes raw observations
to produce data represented within an ontology, but also creates the ontology within
which the data is to be represented (Klein, Moon, & Hoffman, 2006b).

Although situation awareness and decision making have been a topic of research
for many years, the emphasis is on human interaction rather than the formal pro-
cess of decision making. The most prominent example of the former is John Boyd’s
Observe, Orient, Decide, Act (OODA) loop (Boyd, 1976), but there are many oth-
ers. The Joint Directors of Laboratories’ Data Fusion Information Group (JDL/DFIG)
model (Steinberg, Bowman, & White, 1999; Steinberg & Bowman, 2001) is a stan-
dard for data fusion that includes situation assessment as one of a series of levels. The
JDL/DFIG model includes process models but is only descriptive. The Knowledge
Intensive Data System (KIDS) (Gawlick, Chan, Ghoneimy, & Liu, 2015) is a formal
framework based on the OODA loop that provides for:

1. Categorization of data and reasoning processes.
2. State management of data, reasoning and process, and
3. Process model for situation awareness and decision making.

In this article, we briefly survey the frameworks for situation awareness and deci-
sion making in Section 2. We then introduce a running example of an issue tracking



system in Section 3 that will be used to help explain the KIDS framework and the cor-
responding ontology for decision making. The KIDS framework is described in Sec-
tion 4, and the KIDS ontology is presented in Section 5. The KIDS ontology solves two
of the outstanding challenges in Gawlick et al., Section 6; namely, Theoretical Founda-
tions and Declarative Language Support. In addition, the KIDS ontology introduces a
more general execution model than Gawlick et al.; and integrates the KIDS model with
the PROV-O provenance ontology (PROV-0, 2013). The KIDS ontology is designed
to allow for both data and process diversity. These features of our ontology-driven de-
cision making framework are discussed in Section 6 where we describe some of the
challenges and give detailed implementation techniques for our framework. To show
the efficacy of the KIDS framework and ontology, in Section 7 we give a number of
significant use cases where the framework can be employed. We end with conclusions
in Section 8.

2 Background

There are far too many decision making tools for even a superficial survey within the
scope of this article. Ontologies for decision making, on the other hand, are much less
common. To the extent that there are such ontologies, they focus on decision criteria
and alternatives rather than on the process of decision making. In other words, these
ontologies record the rationale for a decision. Rationales are an important part of mod-
ern project development, and represent a mechanism for recording how decisions were
made so that they can be revisited when circumstances change significantly (Bruegge &
Dutoit, 2009). The earliest example of a rationale ontology is in Duggar and Baclawski
(2007). There is a tool based on this ontology for managing rationales and integrating
them in a software development project, specifically with the Eclipse IDE (Duggar,
2008). While the Rationale Ontology is useful for recording the requirements and al-
ternatives that were considered when making a decision, it is primarily concerned with
collaborative decision making by people and does not deal with the decision making
process. There are other rationale ontologies such as the Decision Making (DM) ontol-
ogy in Kornyshova and Deneckere (2010) which is similar to the Rationale Ontology
in Duggar and Baclawski. As we explain below, situation awareness is an essential part
of any decision making process. While the DM ontology article mentions situations,
it does not deal with situation awareness, does not cite work on situation theory or
the earlier work on the Rationale Ontology, does not integrate the DM ontology with
any closely related existing ontologies, and does not mention any tools based on their
ontology.

The fundamental concept for decision making is the notion of a situation. A situa-
tion represents a limited part of reality that can be perceived and reasoned about. A sit-
uation will generally be about some objects within a spatio-temporal extent. Situation
theory was developed by Barwise (1981); Barwise and Perry (1983); Barwise (1989),
and subsequently extended by Devlin (1991). The Situation Theory Ontology (STO)
was developed in Baclawski, Malczewski, Kokar, Letkowski, and Matheus (2002); Ba-
clawski, Kokar, Matheus, Letkowski, and Malczewski (2003); Matheus, Kokar, and
Baclawski (2003) and is available at Baclawski, Malczewski, Kokar, Letkowski, and



Matheus (2006). The STO is specified using the Web Ontology Language (OWL). The
information of that part of reality being represented by a situation is specified using
infons, which are logical sentences about objects relevant to the situation. An infon
can assert that a relationship either holds or does not hold among some objects. This is
called an elementary infon, and it corresponds to an atomic formula in predicate logic.
Other kinds of infon are discussed below. An important feature of STO is that a situa-
tion is a first-class object that can, in principle, be part of another situation. However,
STO does not address the processes involved in dealing with situations. STO has other
difficulties that prevent it from being used in the KIDS ontology. STO has meta-classes
that have classes as their instances. This is inconsistent with Description Logic (DL).!
Consequently, OWL DL editors, such as Protégé (Protege, 2015), and OWL DL rea-
soners, such as FaCT++ (Tsarkov & Horrocks, 2006) cannot properly process STO.
Another difficulty with STO is that it does not support the general notion of a situation
theory infon, being limited to just elementary infons.

The main class of the STO is the Situation class. This class has three subclasses:
utterance situation, resource situation and focal situation. An utterance situation con-
sists of queries or other reasoning processes. While these are traditionally considered
to be statements spoken by a person (and hence the use of the word “utterance” for this
kind of situation), they can be “uttered” by any agent, whether the agent is a person
or a software system. A resource situation consists of data that serves as the general
background for reasoning with other situations. A focal situation or described situa-
tion is that part of the world (as formalized by the resource situation) that is relevant
to a given utterance situation. As Devlin explains, “Also known as the described situa-
tion, the focal situation is that part of the world the utterance is about. Features of the
utterance situation serve to identify the focal situation Devlin, page 12.”

In situation theory, information about a situation is expressed in terms of infons.
Infons may be recursively combined to form compound infons by using conjunction,
disjunction and situation-bounded quantification. Devlin states that “infons are not
things that in themselves are true or false. Rather a particular item of information
may be true or false about a situation Devlin, page 3.” We also allow infons to be
probabilistically specified using a joint probability distribution. Such a distribution
can be efficiently specified using Bayesian networks (Pearl, 2000). The relationship
between a situation s and an infon ¢ is called the supports relationship and it is written

sEo.

The symbol used for the supports relationship is the same as the symbol used for logi-
cal entailment, but the supports relationship can be computed in a variety of ways. As
we will see in Sections 4 and 5, the decision making process will generally use one sit-
uation to produce another one, which is not necessarily a monotonic process, although
any reasoning within a situation may remain monotonic.

The infons in a situation include time information as well as the “polarity” which
indicates whether the fact is true or false in the situation. In some cases, several times

'OWL has a technique for dealing with many modeling use cases that seem to require meta-classes. This
technique is called “punning.” However, punning is effective only when there is no expectation for any
logical consequences of meta relationships (Punning, 2007). Since STO does expect the meta relationships
to have logical consequences, punning cannot be used.



are specified, such as a database transaction timestamp and the time interval when the
infon is deemed to be valid. For example, infons supported by a situation with a limited
temporal extent will generally have a valid time interval. For example,

s E< chases, Rex, Fluffy,l,v,t,true >

says that in the situation s, Rex chases Flufty in the location / and valid time interval
v, and database timestamp ¢, with polarity equal to true. One can, by using a suitable
query, extract the state of the situation (and hence a part of the world) at a specific
instant of time. Consequently, situations are a mechanism for managing the state of a
part of the world, both observing the state and modifying it.

A prototype situation awareness assistant (SAWA) (Matheus et al., 2005b) was de-
veloped that provided some valuable lessons about the problems one encounters when
one automates the process of situation assessment (Matheus et al., 2005a). SAWA is
based on STO and uses OWL to represent facts. The first lesson is that rules are more
complicated in OWL, which can only represent binary relations, compared with repre-
sentation languages that support ternary and higher-order relations, because represent-
ing higher-order relations in OWL requires them to be reified. However, representing
infons and situations generally requires reification anyway in order to represent the
STO “supports” relation, so this problem is not as big as it might be for other applica-
tions. Some other lessons mentioned in Matheus et al. were concerned with temporal
reasoning and uncertainty propagation. Another limitation of SAWA was that it did
not maintain provenance information. We propose mechanisms for dealing with these
lessons.

While STO deals with situational inference, it does not elaborate on the process
whereby inference occurs. In addition, STO has other difficulties that are noted above.
So the KIDS ontology does not import STO, although KIDS does include most of the
notions in STO. However, the KIDS ontology can be regarded as an extension of sit-
vation theory that formalizes the decision making process. Our framework uses the
OODA loop Boyd as the basis for the decision making process. In this loop, as illus-
trated in Figure 1, experts Observe the facts by capturing and filtering relevant data
about the entities and environment, Orient the human participants to the information
condensed from the facts by applying knowledge and personalization (which are anal-
ogous to Boyd’s notions of cultural traditions and genetic heritage), Decide on the
directives based on the hypotheses that best explains the observations, and Act on the
directives to interact with the entities and environment and to test the hypothesis.

The OODA loop is popular in many industries because rapid iteration of the OODA
loop allows one to continuously interact with the environment to assess and adapt to
uncertainty, incomplete knowledge and changes in the environment Boyd. The origi-
nal purpose of the OODA loop was for improving decision making by fighter pilots.
The OODA loop has since been used extensively in many domains such as warfare in
general (Osinga, 2006), business decision making (Richards, 2004), litigation (Dreier,
2012), and healthcare delivery (Toner, 2010; Fioratou, Flin, Glavin, & Patey, 2010;
Healthcare, 2016). The OODA loop is similar to other decision cycles such as sci-
entific discovery (Darian, 2003). However, nearly all of the literature on the OODA
loop is concerned with the decision making process of people rather than computers.
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Figure 1: Diagram of the decision cycle known as the Boyd cycle, or the OODA
loop (Moran, 2008)

As Georgakopoulos (2008) pointed out, “... there are few software systems that are
capable of supporting OODA.” Georgakopoulos went on to propose an architecture for
supporting OODA. While the OODA loop can be regarded as an architecture for de-
cision making, it has no formal treatment of either data or how reasoning takes place.
In particular, there is no explicit model of the data, as it is presumed that all of this is
in the mind of the human making the decision. For the OODA loop to be applicable
to computer-based decision making processes, it must be further refined and expanded
to formalize the data and reasoning processes as well as how these are used to make
decisions.

As noted above, provenance is an important requirement of any decision making
process. In order to maintain provenance information, we use the PROV-O ontology
which is a W3C Recommendation for representing provenance information PROV-O.
To represent the workflow aspects of KIDS we use the OASIS Integrated Collabora-
tion Object Model for Interoperable Collaboration Services (ICOM) which defines a
framework for integrating a broad range of domain models for collaboration activities
in an integrated and interoperable collaboration environment (ICOM, 2013). The ad-
vantage of ICOM over other workflow models is the support for flexible collaboration
using tools such as email, teleconferencing, chat, wikis, and social networking. Other
workflow models are generally pre-defined and linear.

3 Issue Tracker Example

To illustrate our framework, we will use a running example. This example is an issue
tracking system. Such systems are used for dealing with bugs in the software develop-
ment lifecycle, but they are applicable to many other development processes. An issue
tracking system manages issues raised by individuals who have a stake in some prod-
uct. For example, the customers of a company or the users of a software artifact. Issues
have a life-cycle in which the issues are reported, tracked and eventually resolved. A
particular instance of an issue raised by a participant is often called a “ticket.” A ticket



includes all the information related to the progress toward resolving the issue. A ticket
may be regarded as an evolving situation. The handling of an issue may require a series
of cycles if it cannot be immediately resolved. In such a process there may therefore
be a series of decisions and actions which help to resolve the issue.

An important aspect of any issue tracking system, as its name suggests, is the re-
quirement that an issue be tracked. In other words, one should manage not only the
data associated with the steps in issue resolution but, ideally, also the provenance of
the data. For example, it is important to track not only the decision that was taken but
also the process that led to the decision.

The process of issue tracking and resolution can be defined as having the following
steps:

1. The issue is raised by a reporter. The reporter describes the issue and provides
related data.

2. The issue is classified. Typically there is a fixed set of categories, but there are
usually mechanisms for introducing customized categories. Issues are also often
assigned priorities as well as other attributes.

3. The possible causes are identified. This may require its own process.

4. Decisions are made in an effort to fully or partially resolve the issue. In elaborate
cases, this will involve a detailed plan.

5. Actions are taken to carry out the decisions.

In the rest of this article, we will relate the steps above to the KIDS model with its
decision making process.

4 The KIDS Framework

At the highest level, the KIDS framework is a decision making and enactment process
for situations that distinguishes different kinds of data as well as different kinds of
reasoning in the decision making process (Gawlick et al., 2015; Liu, Behrend, Chan,
Gawlick, & Ghoneimy, 2012; Chan, Behrend, Gawlick, Ghoneimy, & Liu, 2012; Chan,
Gawlick, Ghoneimy, & Liu, 2014). In this section we describe these kinds of data and
reasoning as well as how they fit together in the decision making process.

4.1 The KIDS Data Hierarchy

In the KIDS framework, a situation is represented by a collection of instances of the
Data class Chan et al.. These instances are the infons supported by a situation. The Data
class has four disjoint subclasses, depending on how the data is employed in the process
of decision making and enactment. This is in contrast to the generic situation theory
ontology Baclawski et al., which does not subclassify infons or address the various
steps in the decision making process. The four subclasses of Data are Fact, Perception,
Hypothesis and Directive. We now discuss what these subclasses represent.



In the KIDS framework, the Fact subclass represents observations of reality. Cur-
rent data collection tools produce data at a rate that makes it impossible for human
cognition to deal with directly. To start a decision making process, it is necessary to
perform relevance reasoning to select the infons in the first situation from all of the
observed data. Modern sensor technology produces very large amounts of data, only a
small part of which will be relevant to a particular purpose. In our running example of
an issue tracking system, these observations are, at least initially, provided by the issue
reporter. Additional observations are added as the situation evolves. For software bug
tracking, the observations may be system traces or other data obtained by monitors.

The Perception subclass represents compact interpretations of the facts, obtained
by a data reduction process. Most commonly, perceptions are classifications of the
facts. Unlike raw facts, perceptions are sufficiently compact to be directly dealt with
by humans. Perceptions are the most important characteristics of an evolving situation.
For an issue tracking system, perceptions are the classifications of the observations.
Typically, the reporter is not only responsible for collecting the raw facts for the issue
but is also responsible for the initial classification of the facts. This is necessary, in
practice, because the reporter is a person who is raising the issue to other persons. So
communicating with raw facts alone would not be feasible. For software bug tracking,
a perception is a statement of the problem that was encountered.

The Hypothesis subclass represents possible causes that explain the facts and per-
ceptions. In practice, there will be many possible causes, and it can be difficult to
distinguish them. In some situations, there may even be controversy associated with
suggesting different causes. Unlike perceptions, hypotheses are not essential to a de-
cision making process. One could directly make decisions without determining the
causes for the perceptions. For an issue tracking system, hypotheses are the possible
underlying reasons for the perceived bugs.

The Directive subclass represents the action plans that are proposed to address the
perceptions and hypotheses. A directive could fully address the situation or it might
only partially address it. A directive might, for example, be a plan for gathering ad-
ditional observations rather than directly resolving the situation. For an issue tracking
system, a directive is either a plan for correcting the issue, a plan for collecting more
data about the situation or both or neither. Note that a directive can explicitly state
that the issue will not be addressed and will be closed. This can be due to a variety
of reasons such as limited resources and pressure to release new product versions with
new features. In the case of bug tracking, one might try to patch the software while at
the same time running tests to clarify whether the proposed causes have been correctly
identified.

4.2 The KIDS Reasoning Hierarchy and CARE Loop

Having classified the data according to how it is used, we now classify how reasoning
is performed. We refer to the different types of reasoning that occur in the process
of decision making and enactment as the modes of reasoning. For each mode of rea-
soning, we distinguish the process being applied from the action in which a process
is applied, which includes parameters and annotations such as the time when the ac-
tion was applied and the execution environment. The execution environment includes,



for example, the operating system and version information about the programs em-
ployed. The purpose of recording the execution environment is to provide background
information sufficient for reproducing the result of the activity invocation. One can
think of a reasoning activity as being an example of the Command Design Pattern of
object-oriented software development (Gamma, Helm, Johnson, & Vlissides, 1995).
Collectively, the modes of reasoning and enactment employed in KIDS are instances
of the Reasoning class of KIDS, while the reified reasoning processes are instances of
the Activity class which is borrowed from the PROV-O ontology. The general notion
of a “situation” includes both data and reified reasoning processes.

The Reasoning class has six disjoint subclasses: Relevance, Classification, Assess-
ment, Resolution, Assessment/Resolution and Enactment. The Activity class has six
disjoint subclasses corresponding to the subclasses of Reasoning: Filter, Classify, As-
sess, Resolve, Assess/Resolve and Enact. The six kinds of activity and four kinds of
data form a decision making and enactment process loop as shown in Figure 2. This
loop is called the CARE Loop after the names of the four main classes of activity being
performed. The CARE Loop can be configured to run with a fixed time period for each
loop or to run in response to events, depending on the requirements of the application
domain.

Classification

g
—E
w

> Perceptions

Enactment
JUSWISSassY

>

Directives

Hypotheses

Resolution

Figure 2: Diagram of the decision cycle known as the CARE Loop of the KIDS Frame-
work

An instance of Classification is a process that transforms raw facts into percep-
tions. While the most common form of reasoning is deductive, it is also possible to use
inductive reasoning. Examples of such classification processes include Support Vec-
tor Machines, Naive Bayesian Networks, Neural Networks, Clustering, Association
Rules, decision trees, Multivariate State Estimation Techniques (MSET), etc. For the
issue tracking example, relatively simple classification processes are commonly used,
including ad hoc queries and filters and even human cognition, although some systems
employ more sophisticated classification techniques.

The Assessment subclass represents the processes that transform perceptions into
hypotheses. The most common form of reasoning for this kind of process is abductive



reasoning (Peirce, 1992). In this form of reasoning one seeks the theory that is the sim-
plest and most likely explanation for the observations. Probabilistic abduction is used
extensively in areas where it is desirable to compute a quantitative estimate of the like-
lihood of each possible hypothesis, such as for making diagnoses from medical tests.
Some examples of assessment processes include Bayesian networks, Least-Squares
Optimization/Regression of solutions for inverse problems, and null hypothesis testing
techniques such as Sequential Probability Ratio Tests (SPRT). For an issue tracking
system, assessment is typically done by people. This is especially true for bug track-
ing. Since software is an artifact rather than an object in nature, the developers of the
artifact are often the ones most qualified to determine the cause of a bug.

The Resolution subclass represents the processes that transform perceptions and
hypotheses into directives. Such a process must usually make decisions under uncer-
tainty. This involves weighting the different outcomes using quantitative criteria such
as costs and benefits. There are many techniques for decision making under uncer-
tainty, including influence diagrams, Dempster-Shafer theory, decision trees, and Prog-
nosis of Remaining Useful Life. Many of these technique, such as influence diagrams,
can make a decision without the need for determining any underlying causes. In other
words, one can combine the assessment and resolution processes. This is shown as an
alternative path between Perception and Directive in Figure 2. For the issue tracking
example, resolution is typically done by a team that has been given the responsibility
for making the decision about how to resolve the issue. For bug tracking, resolution is
the process of determining the best way to fix the bug. Unlike issue tracking in general,
in bug tracking a single individual may be responsible for fixing a bug.

The Enactment subclass represents the processes that transform reality in some
way. Such a process can also produce new facts, thus closing the CARE Loop as
shown in Figure 2. Enactment processes involve a wide variety of control structures.
An enactment action might be as simple as publishing a new policy or it may be as
complex as performing a medical procedure on a patient. For issue tracking systems,
the action plan may be encoded in scripts. In the case of bug tracking, such a script
would fix the bug by patching the software.

The interpretation of the issue tracking process in terms of the KIDS framework is
summarized in Table 1. The example shown in Table 2 is the case of a memory leak
caused by a Java program that keeps track of the objects of a class by using a Map. The
objects are not garbage collected even after they are no longer needed because they
are still in the Map. The correction is to redesign the Map to use weak references that
allow the objects to be freed. The steps in the CARE loop are self-explanatory except
for the Assessment activity, which consists of proposing various scenarios that could
produce the observed behavior, and then selecting the ones that fit most closely. In this
example, the scenario about the Map fits much better than any other scenario.

5 The KIDS Ontology

In this section we give an overview of the KIDS ontology, showing selected parts of the
ontology. The ontology is represented in OWL. The full KIDS ontology can be found
at Baclawski (2016). The Protégé tool Protege was used for ontology development. As
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Table 1: The Issue Tracking Process

KIDS Class Issue Tracking Concept
Fact Data provided by the participant who raised the issue
Relevance Process of filtering data relevant to the issue,
an activity usually performed by the customer

Classification | Classification of the issue
Perception Issue category and properties
Assessment Process whereby the cause of the issue is determined
Hypothesis Possible causes of the issue
Resolution Selection of a plan to deal with the issue
Assessment/ | Selection of a plan to deal with symptoms

Resolution without determining the actual cause
Directive Plan for addressing the issue
Enactment Actions that are taken to try to resolve the issue

Table 2: Issue tracking example for a memory leak in a Java program

KIDS Class Example
Fact stack traces, heap dumps
Relevance only heap dumps are relevant
Classification perform statistical analysis
Perception class with largest memory use
Assessment compare with various scenarios
Hypothesis memory leak due to a Map
Resolution redesign to free objects
Assessment/Directive | not used in this scenario
Enactment participants implement bug fix

11




Table 3: Ontology Prefixes

Prefix Ontology
kids: KIDS Ontology
prov: PROV-O Provenance Ontology
icom_core: | ICOM Core Ontology

already noted in Section 2, the KIDS ontology makes use of many other ontologies.
The ontology from which a concept arises is specified with a prefix. The prefixes are
shown in Table 3.

5.1 Data and Reasoning

The Devlin situation theory represents data using infons, the class of which is
kids:Infon. A situation is an instance of Kids:Situation, which has the sub-
classes kids:ResourceSituation, kids:UtteranceSituation and kids:FocalSituation.
The classes kids:Infon and kids:Situation are subclasses of owl:Thing, which al-
lows infons and situations to be used as attribute values of other infons. The
kids:supportsInfon property specifies the infons that a situation supports.

AN

[
| prov:Entity | ‘ kids:Infon [« = kids:Situation
? ﬁl kids:supportsinfon

[
[Kids:Data | [ Kids:Activity | [ kids:ResourcesSituation | | |kids:FocalSituation

[ | kids:UtteranceSituation

‘ kids:Fact ‘ | kids:Hypothesis |

[ kids:Perception | | kids:Directive |

Figure 3: Diagram of the Data hierarchy of the KIDS Ontology along with some of the
related classes from the PROV-O and STO ontologies

In the KIDS ontology, there are two kinds of infons: data infons and activity in-
fons. The class of data infons is kids:Data. As described in Section 4 above, KIDS
subclassifies the kids:Data class into four subclasses depending on the mode of rea-
soning being employed. These are kids:Fact, kids:Perception, kids:Hypothesis and
kids:Directive, see Figure 3. The kids:Data class is a subclass of kids:Infon because
data is represented using infons. In addition, kids:Data is a subclass of prov:Entity
from the PROV-O ontology, which allows data infons to be annotated with provenance
information.

Activity infons are more complex in the KIDS ontology. Each activity is per-
forming a reasoning process using data supported by an input situation and pro-
ducing data that is marked as being supported by an output situation. The class
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of reasoning processes is called kids:Reasoning. KIDS classifies reasoning pro-
cesses into subclasses depending on the stages of the decision making process.
These are kids:Relevance, kids:Classification, kids:Assessment, kids:Resolution,
kids:AssessmentResolution, and kids:Enactment. An invocation of a reasoning pro-
cess is an instance of prov:Activity. Each activity should invoke exactly one reason-
ing process. The object property that specifies the reasoning process invoked by an
activity is kids:invokes. The Kids:invokes property is an owl:ObjectProperty and
an owl:FunctionalProperty, whose domain is prov:Activity. This only ensures that
each activity invokes at most one object. The remaining constraints on activity in-
vocation are specified for each subclass of prov:Activity. Accordingly, there is one
subclass of prov:Activity for each subclass of kids:Reasoning; namely, kids:Filter,
kids:Classify, kids:Assess, kids:Resolve, kids:AssessResolve, and kids:Enact, re-
spectively. The subclasses of prov:Activity are actually defined by OWL class con-
structors. For example,

kids:Classify = Jkids:invokes.kids:Classification

This class constructor ensures that each kids:Classify activity invokes at least one rea-
soning process and that the activity invokes a kids:Classification reasoning process.
When combined with the previous constraints on kids:invokes, each kids:Classify ac-
tivity invokes exactly one kids:Classification reasoning process. Therefore, one can
infer the following:

kids:Classify = Jkids:invokes.kids:Classification M Vkids:invokes.kids:Classification

Those classes that are defined by class constructors are italicized in the class dia-
grams.

In general, several activities can be used for one step in decision making.
The activities performed by one step form an utterance situation. Consequently,
one can derive six subclasses of kids:UtteranceSituation depending on what kind
of activities it supports: Kkids:RelevanceSituation, kids:ClassificationSituation,
kids:AssessmentSituation, kids:ResolutionSituation, kids:AssessmentResolution
Situation, and kids:EnactmentSituation, respectively. These situation classes are
derived classes defined using class constructors. For example,

kids: AssessmentSituation = kids: UtteranceSituation1Vkids:supportsInfon.kids: Assess

The reasoning and activity hierarchies are shown in Figure 4.

As we described in Section 4 above, each reasoning process defines the require-
ments for its inputs, the kids:inputSpecification of the process, and specifies the char-
acteristics of its outputs, the kids:outputSpecification of the process. Each of these is
expressed as a kids:Guard. A specific implementation of a kids:Guard is described
in Section 6.2. Each reasoning process is annotated using PROV-O with the skills and
capabilities provided by the process in the decision making process.

5.2 Capturing the Decision Making Process

A decision making process begins with background data obtained by observations. The
background data is represented as infons supported by a kids:ResourceSituation. To
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Figure 4: Diagram of the Reasoning, Activity and Utterance Situation hierarchies of
the KIDS Ontology and the relationships between the hierarchies

start a CARE Loop, relevance reasoning is performed to select the infons in the first
kids:FactSituation from the infons in the kids:ResourceSituation. The purpose of the
decision making process is to achieve an explicitly stated goal. The goal determines
the relations and objects that are relevant. This is done by means of a kids:Guard
object. The clauses in the kids:Guard are used to filter the relevant infons from
the kids:ResourceSituation to compose a kids:FactSituation, which is a subclass of
kids:FocalSituation. For added performance, one can also restrict attention to relevant
data that has changed significantly since a previous decision making cycle. However,
even if the ultimate goal is to answer a query involving a single class and property
for a single object, other classes, properties and objects may also be relevant because
of rules and other reasoning processes. Consequently, a relevance reasoning step will
often be necessary. Some techniques for relevance reasoning are discussed in more de-
tail in Section 6.2 below. Extracting the infons having a relevant relation (i.e., relevant
class or property in the terminology of OWL) is done with T-box reasoning. Extracting
the infons having a relevant object is done with A-box reasoning. Not all CARE loops
need a relevance reasoning step. In an issue tracking system, the data provided for an
issue has already been selected for relevance by the agent who raised the issue.
Having constructed a kids:FactSituation, one can now start the decision mak-
ing process. This is a loop that can proceed as follows: the kids:FactSituation
is used to produce a kids:PerceptionSituation, which is used to produce a
kids:HypothesisSituation, which is used to produce a kids:DirectiveSituation,
which is used to produce a kids:FactSituation, and the process then proceeds it-
eratively. Many variations are possible. For example, one can skip producing
a kids:HypothesisSituation, directly producing a kids:DirectiveSituation from a
kids:PerceptionSituation. One can also explore alternative (sequential) or concurrent
(parallel) branches from a single input situation. This allows one to use a variety of
execution models. While the actual execution model is outside the scope of the KIDS
ontology, one can use annotations to record how the decision making process is being
executed. The situation that is used as input to the utterance situation and the situations
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that are produced as output from the utterance situation are connected by object prop-
erties between Kids:UtteranceSituation and kids:FocalSituation. The object prop-
erties are kids:usesSituation and kids:producesSituation. The situations (activities
and data) in a kids:CARE-Loop form a directed graph via the kids:usesSituation and
kids:producesSituation object properties. At the activity level, the infons that are used
as input to an activity are specified by kids:usesInfon, and the infons that are produced
as output from an activity are specified by kids:producesInfon. The kids:partOfLoop
object property specifies the CARE Loop to which a situation belongs.

=
sto:FocalSituation —  sto:ElementaryInfon

kids:usesSituation kids:usesInfon
|:

sto:UtteranceSituation —> prov:Activity

kids:producesSituation kids:producesInfon

-
sto:FocalSituation — - sto:ElementaryInfon

Figure 5: Diagram of uses, produces and support properties interpreted as morphisms
in the category of binary relations

The various uses, produces and support properties form the diagram in Figure 5.
The arrows in this diagram are morphisms in the category? of binary relations, in which
the composition of morphisms is defined by joining them. The upper square in the
diagram above is not necessarily commutative because an activity need not use every
infon in the focal situation. However, the lower square should be commutative as this
ensures that if an utterance situation u produces a focal situation s, then the infons
supported by s are exactly the ones that are generated by activities supported by u.
The commutativity of the lower square is enforced in the KIDS ontology by means
of the OWL 2 property chain construct (Hitzler, Krotzsch, Parsia, Patel-Schneider, &
Rudolph, 2009, Section 6.2).

In the most general CARE Loop, a kids:Classification process transforms
kids:Fact to kids:Perception; a kids: Assessment process transforms kids:Perception
to kids:Hypothesis; a Kkids:Resolution process transforms kids:Hypothesis to
kids:Directive; and a kids:Enactment process transforms kids:Directive to
kids:Fact. The last transformation is more complex than the others. It is depicted
in Figure 6 and is explained in more detail below. However, in more specialized
CARE loops, one can have feedback loops, and one can even skip over a step in the
general loop. For example, one can skip constructing an hypothesis, and go directly
from kids:Perception to kids:Directive with a process in kids: AssessmentResolution

2The word “category” in this case is from mathematical category theory. It was used here only as a means
of showing how various properties are constrained in the KIDS ontology. The actual constraints are specified
using OWL property chains.
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which is a transformation that combines assessment and resolution. This is commonly
done in an issue tracking system where one can initially propose a solution that deals
with the problem, effectively masking it, without determining the underlying cause.
An example is given in Section 6.2.

5.3 Bitemporality

An activity has two times: the transaction time and the valid time. The transaction time
is the time when the actual processing of the activity takes place. The valid time is the
time interval during which the activity is meaningful within a situation. The valid time
can be either in the past or the future relative to the transaction time. By having two
notions of time, one can deal with the conflicting requirements of the actual processing
operations on computing hardware and the time in the world when events take place.
This split between transaction time and valid time is called bitemporality and is a fun-
damental part of the KIDS framework. The transaction time is represented in the KIDS
ontology by the provenance annotations prov:startedAtTime and prov:endedAtTime
as these are concerned with the activity that was performed. Valid time, however, is not
about when the activity occurred but when rather the period of time in the situation dur-
ing which data are valid. This concept of time is represented by kids:hasValidTime,
whose value is in kids:TimeInterval. The starting time for a time interval is specified
with kids:startTime, and the ending time with Kids:endTime. The ending time can
be either an actual time or some reason why the ending time is not specified, such as
that the period of time proceeds indefinitely into the future, or that the period of time
is instantaneous so the ending time is not applicable.

Bitemporality gives rise to two notions of sequence: a succession in valid time and a
succession in transaction time. We use the object properties kids:followsInValidTime
and Kkids:followsInTransactionTime to represent the next kids:Situation in each of
the sequences. These properties differ from prov:wasDerivedFrom because the next
situation is not derived from the previous one in the sequence. However, these prop-
erties are stronger than simply that the situations occur in a linear sequence of times,
because they may be regarded as being part of a single larger situation. For example,
when one has a series of medical tests this would be represented with kids:followsIn
ValidTime because the results of the tests are not necessarily available immediately or
in order by transaction time. On the other hand, if one is performing a series of database
queries and updates, then this would be represented with kids:followsInTransaction
Time. In practice, both kinds of sequences can occur in a single CARE loop.

5.4 The CARE Loop within a Context

The purpose of a decision making process is to modify the world to achieve a goal on
behalf of an agent. The modification of the world is itself a complex activity which we
have not explicitly modeled. In Figure 6, we show how the CARE Loop interacts with
the world, although the ontology does not model the sensors, actuators, embedded con-
trollers and the other agents affected by the decision making process. It is assumed that
the agent that is running the CARE Loop is responsible for either directly implementing
the directive activities or ensuring that they are carried out by other agents. When other
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Figure 6: Diagram illustrating how the CARE Loop of the KIDS Framework interacts
with the World

agents are carrying out the directive activities, the agent acts as a supervisor, which is
represented by the Supervision link in Figure 6. For example, if a directive is not com-
pleted in a timely fashion, then the agent must intervene or raise an exception (if the
other agents are software systems), and attempt to perform corrective actions. In the
bug tracking example, directives are plans for correcting a customer issue. The super-
vising agent would normally set a time limit for the plan to be completed. If the plan
was not completed by the deadline, then the priority of the issue would be escalated so
that it receives more attention and resources.

kids:Classify kids:Perception

Kids-Fact SHUATION || KidS:Classification kids:Perception

Situation Situation
T s — S T — '}
k:ds. Enacr i =y
; .~’'| Resolution Situation TP
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Situation | .-~ e . o i
T - ids:Assessmen i —
LT Resolution i
kids:Directive kids:Resolution| | kids:Hypothesis
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Figure 7: Diagram of the CARE Loop in terms of the KIDS Ontology

The data and activities of the CARE Loop (except for the relevance reasoning step)
are shown in Figure 7. For example, the assessment step is performed by activities in
the kids:Assess class. Such an activity uses a Kids:PerceptionSituation and produces
a kids:HypothesisSituation. This diagram is the ontological representation of the
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decision making process that is depicted informally in Figure 1 and semi-formally in
Figure 2.

Each CARE Loop is invoked by a prov:Agent, which can be a person, organization
or software process. The prov:actsOnBehalfOf property specifies the agent that is re-
sponsible for invoking the CARE Loop. While the agent who invokes the kids:CARE-
Loop is ultimately responsible for the activities that are performed, the invocations
themselves are often the responsibility of some intermediary, usually a software pro-
cess. The software process is represented as a prov:SoftwareAgent. To allow a CARE
Loop to be part of a collaborative activity by multiple individuals, it can have an as-
sociated icom_core:Space. This is specified with the kids:hasWorkspace property.
The ICOM ontology models a large variety of communication and collaboration mech-
anisms, including email, chat, teleconferences, wikis, blogs, and social networking.
ICOM is a modular ontology with twelve modules, including access control (icom_ac
module), document management (icom_doc module), email and chat (icom_msg mod-
ule), and attachments in other media (icom_content module). Collaboration is espe-
cially important for an issue tracking system because issue resolution can involve large
geographically distributed teams, such as for open-source projects.

5.5 Comparison of the KIDS Ontology with the KIDS Model

Although the KIDS ontology developed in this section is intended to be the ontology
for the KIDS model developed in Gawlick et al.; Liu et al.; Chan et al., there are a
number of differences. While the concept of “situation” is similar in both the KIDS
model and the KIDS ontology, in the ontology we used the STO concept rather than
the concept in the KIDS model. In particular, an STO situation is a flexible concept that
allows situations to contain other situations and also distinguish resource, utterance and
focal situations, none of which were developed in the KIDS model.

Another difference between the KIDS model and the KIDS ontology is the repre-
sentation of the execution history. The KIDS model includes a loop counter, which
represents discrete time 7; with an index k = 1,2,...n, where n is the current loop
counter of a CARE Loop. The model identifies an activity in a CARE Loop by a time
index k, e.g., CARE-Loopy.classify, CARE-Loopy.assess, CARE-Loopy.resolve, and
CARE-Loopy.enact. The model stipulates a function that maps the discrete time in-
dex to the valid times. The activities for the same index k have the same valid time,
which normally advances monotonically with index k such that the valid time of a
CARE loop at time index k is normally [T}, Tiy1), where Tiy; > T;. However, the
model allows for out of order execution of activities with respect to the valid times,
i.e., Tp11 < T} for some k, and so the valid time of a CARE loop at time index k is
generally [Ty, min{T; | j <n,j#k,Tj > Ty }) where n is the current loop counter. The
model also stipulates that the time index can be reset to a lower number in order to
re-evaluate past situations and activities. By contrast, the KIDS ontology is much more
flexible by specifying the execution history implicitly in the directed graph of situa-
tions and activities. The directed graph is more flexible for representing the repeated
executions of the activities, by branches in the directed graph. With this flexibility of
branching in the directed graph, the KIDS ontology avoids the conceptual difficulty
of the KIDS model in representing the resetting of the time index. It also allows for
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exploration concurrently in alternative paths as well as backtracking to revisit previous
phases.

The KIDS model uses Flexible Schema Data (FSD) and Features to represent data.
These are handled in the KIDS ontology by using kids:Infon, which was specified to be
a prov:Entity so that it can be annotated with provenance information. FSDType and
FeatureType are available in the KIDS ontology as kids:Relation which corresponds
to the situation theory concept of relation. Incidentally, while Kids:Infon was adequate
for the use cases, it is likely that a more general notion of infon would be necessary for
other application domains.

The KIDS model uses the term “knowledge” to mean a function by which data is
processed to produce new data. An example of such a mechanism is a rule, but many
other kinds of mechanism can be used. Unfortunately, the term “knowledge” includes
information as well as skills, so it is much too general for how it is used in the KIDS
model. Consequently, in the KIDS ontology, the word “reasoning” was used instead.
The common superclass of data and knowledge is called CARE in the KIDS model.
The class corresponding to CARE is kids:Infon in the KIDS ontology. The invocation
of a knowledge function is an activity, so it was handled in the KIDS ontology using
prov:Activity from the PROV-O ontology. The collection of all activities performed
for one stage of a CARE Loop is handled using a kids:UtteranceSituation.

The notions of actor, actor profile, owner, agent, assignee, encoding, description
and language of the KIDS model were handled in the KIDS ontology by the PROV-O
ontology and XML Schema Datatypes. The KIDS model includes a notion of vector
for representing data as well as a figure of merit. Since vectors as well as many other
data structures can be represented using relations, the notion of kids:Infon is sufficient
for representing data. The notion of an entity in the KIDS model was handled in the
KIDS ontology using prov:Entity.

6 Data Diversity and Execution Models

Traditional systems, including relational databases (Codd, 1970) and ontology-based
systems, presume that the schema or ontology is developed prior to storing any data.
Not all data is effectively handled in this manner, such as documents and spread-
sheets that do not have a fixed schema or ontology. We call this kind of data Flex-
ible Schema Data (FSD). This refers to schema-less unstructured document content
and semi-structured data, as well as structured data such as linked data (Bizer, Heath,
& Berners-Lee, 2009) whose metadata requires continuous evolution. It is a common
practice for users to process such data with systems that do not require up-front schema
modeling and ontology development to store and process data with these characteris-
tics. In this section we first discuss the issues that arise with FSD, then propose detailed
execution models for processing FSD occurring in a decision making process, and fi-
nally discuss how KIDS can orchestrate the processing of FSD using some Big Data
tools.
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6.1 Flexible Data Issues

Data that we refer to as FSD are already implemented in many systems. Content man-
agement systems are used for document, image and video storage, and such systems
build a text index to allow users to search their content efficiently (Salton & McGill,
1986). Semi-structured data is commonly represented in XML and increasingly in
JSON. Native database systems have been developed for storing such data, and new
systems are continually emerging as well. XML can be queried with XQuery. While
there do exist query languages for JSON, they are relatively recent, with a great variety
of syntaxes and semantics for them. NoSQL systems are frequently used for semi-
structured data, and there is a trend toward using JSON as the preferred format for the
NoSQL community. However, there is little commonality among all of the formats and
query languages for this great variety of unstructured and semi-structured data. As a
result, management of data is an increasingly complex task. Users must use many data
platforms that have incompatible capabilities and query languages. Integration of such
data is currently handled in an ad hoc manner by application programmers.

To deal with this problem, database management systems, especially relational
database management systems (RDBMS), are being extended to be able to manage
a variety of datatypes beyond the traditional relational data model. The SQL language
has been extended to include support for user-defined datatypes (UDT) as well as hi-
erarchically structured data such as XML and JSON. This approach leverages the ad-
vantages and lessons learned by the RDBMS community. However, this approach still
requires the development of a schema prior to storage and retrieval of data. Liu and
Gawlick have proposed three principles to extend RDBMS platforms to manage FSD
in the new extended relational systems; namely, principles for data storage, querying
and indexing. See Liu and Gawlick (2015) for details.

For the issue tracking example, issues can be raised that use completely new kinds
of data, such as unstructured documents, images and videos. When such issues are
raised, they introduce their own metadata. Videos, for example, have rendition meta-
data such as frame rates and formats. Such metadata would be outside the existing
schema for the issue tracking system. An issue tracking system would normally have
no mechanism for dealing with such data and metadata as anything but unstructured
data.

6.2 Processing Flexible Data

The most important difference between FSD and RDBMS is the decentralization of
metadata in FSD compared with the centralized schema requirement of an RDBMS.
We propose that ontologies are well suited for managing such decentralized metadata.
Ontologies based on RDF/S and OWL use open-world semantics which allows for
incorporating new metadata as new forms of data are being stored in the system. How-
ever, processing OWL ontologies can be very inefficient because of the computational
complexity of description logic. To deal with this problem, we use reasoning processes
which use one situation to produce another situation. Such reasoning processes can
be non-monotonic. For example, one can use statistical techniques with Bayesian net-
works and influence diagrams in kids:Assessment and kids:Resolution reasoning pro-
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cesses. To reason about relevant relations and individuals of kids:RelevanceSituation,
one can use database technologies such as registered, bitemporal, flashback queries,
and expression filters as described below.

As discussed in Section 5.2, a kids:Guard is responsible for selecting the relevant
relations and objects for a reasoning activity. The kids:Guard binds the variables of
the kids:inputSpecification and kids:outputSpecification of a kids:Reasoning pro-
cess with the objects in a CARE Loop to formulate a query to filter the relevant in-
fons from a situation. The results of this query are used to compose another situa-
tion in the CARE Loop. The query is registered with the database where the expres-
sions in the query are indexed using expression filters (stored conditional expressions)
(Yalamanchi, Srinivasan, & Gawlick, 2003). The expression filters can be used to filter
the expressions that are relevant to the new infons, whose polarity can change in either
direction so that they can either assert or retract infons to enable non-monotonic reason-
ing with situations. The relevance reasoning involves mutual filtering; namely, while
the guard clauses are filtering the relevant infons, the expression filters are filtering the
guard clauses using new infons. The execution is data-driven: when a prov:Activity
produces new infons, the expression filters select the guard clauses that are relevant
to the new infons, and the selected guard queries are executed. In other words, the
execution model is necessarily asynchronous, although if the data is available syn-
chronously, then the processing can also be synchronous. The guard queries need to be
executed using flashback query technology, a technology that views database objects
in the past. The particular technology we use is Oracle flashback query. Typically, a
kids:FocalSituation is composed by a flashback query as of the transaction time given
by the prov:endedAtTime property of the prov:Activity that produces the new infons.
The prov:endedAtTime property of the prov:Activity that produces the new infons
for the kids:FocalSituation is equated to the prov:startedAtTime property of the new
prov:Activity that uses the infons of the Kids:FocalSituation. On the other hand, the
prov:endedAtTime property of the new prov:Activity may be represented by the log
sequence number generated when its transaction is committed.

Typically a kids:Reasoning process invoked by a prov:Activity is reevaluated
if the kids:FocalSituation used by the kids:UtteranceSituation that supports the
prov:Activity changes significantly. This involves querying the two states of the
kids:FocalSituation by flashback queries as of two different transaction times. This
allows one to compare the state of the kids:FocalSituation in the past with their
current state without having to save a snapshot of each kids:FocalSituation used
by any kids:UtteranceSituation. When a kids:Guard is selected by the expres-
sion filters, the KIDS engine can execute a first flashback query as of the transac-
tion time given by the prov:startedAtTime property of a prov:Activity that invokes
a kids:Reasoning process, which in turn is associated with the kids:Guard of the
CARE Loop. It compares the result of the first flashback query with the result of a
second flashback query as of the transaction time given by the prov:endedAtTime
property of a recent prov:Activity in a different part of the CARE-Loop or a differ-
ent CARE-Loop. If the two flashback queries show substantive, relevant changes in
the kids:ResourceSituation, the KIDS engine can reevaluate the kids:Reasoning pro-
cess in a new prov:Activity using a new Kids:FocalSituation; the transaction time
of the second flashback query is set as the prov:startedAtTime property of the new
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prov:Activity. If more than one prov:Activity can be invoked in a CARE Loop, the
KIDS engine shall invoke them in the precedence ordering: classify < assess < resolve
< enact.

The reasoning processes invoked by kids:Classify, kids:Assess, and kids:Resolve
activities can be reevaluated any number of times, in the precedence order, as long as
the kids:Enact activity has not been invoked. While each reevaluation logically pro-
duces a new Kids:FocalSituation, it is more intuitive as well as more efficient to regard
the kids:FocalSituation as being updated. After the kids:Enact activity is invoked,
it may require compensating directives to re-invoke the kids:Enact activity. Some-
times after a kids:Enact activity is invoked, its preceding kids:Classify, kids:Assess,
and kids:Resolve activities may be reevaluated to see how the decision process will
have performed in the light of the kids:Fact, kids:Perception, kids:Hypothesis, and
kids:Directive that are updated retroactively to the valid times of the past activities.
Like the kids:Data, a kids:Reasoning and kids:Guard can be updated, and their valid
times set retroactively to the valid times of the past activity. These updates will trig-
ger the reevaluation of the reasoning processes for kids:Classify, kids:Assess, and
kids:Resolve activities. Sometimes the kids:Enact activity can be repeated with the
compensating directives.

This kind of behavior is important in an issue tracking system. For the issue track-
ing system example, a common way to deal with issues is to first suggest a temporary
solution without determining the actual cause of the problem, and then later determine
the underlying cause and solve it. For example, a program might have a bug that re-
sults in a memory leak. The users could deal with the problem by increasing memory
limits. Later, when the bug has been found and corrected, the users should install the
bug correction and “undo” the previous solution (i.e., increasing memory limits).

6.3 Processing Big Data
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Figure 8: Architecture diagram illustrating how the KIDS Framework can be used to
orchestrate Big Data discovery and hypothesis testing processes
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An example of how KIDS can integrate inference engines in a Big Data system is
shown in Figure 8. The KIDS orchestration engine in Figure 8 can be implemented with
Oracle Database technologies, including the registered, bitemporal, flashback queries,
and expression filters. The KIDS engine can submit a CARE-Loop application to the
Apache Hadoop YARN Resource Manager, which will launch the CARE-Loop Appli-
cation Master (AM) in a container in one of the compute nodes in the Hadoop cluster.
These actions are shown as arrows from the KIDS engine in Figure 8. Each CARE-
Loop AM can be a long running process within its node, which reports its activities
to the Resource Manager. This is a dashed arrow in the figure from each CARE-Loop
AM. The Resource Manager allows the KIDS engine to monitor the status of each
CARE-Loop AM. This is shown as a dashed arrow in the figure from the KIDS en-
gine to the Resource Manager. The CARE-Loop AMs and their activities can store the
high-value perceptions, hypotheses, and directives as data in the bitemporal database.
This is shown as dotted arrows in the figure. The reasoning processes of the CARE-
Loop activities can be executed in Apache Spark, can access the data in Apache Hbase,
and can take advantage of data locality among the Spark worker nodes, HBase region
servers, and Apache Hadoop HDFS data nodes.

Returning to the issue tracking system example, by specifying the metadata for
new issues in a standard language, such as OWL, it can be stored, queried and indexed.
More significantly, it can be used for integrating data from other relevant issues. The
data can be distributed and processed using a Big Data system such as the one shown
above. One constructs the situation by combining relevant information from the cur-
rent issue as well as other issues. Relevance is determined by the intended goal to
be achieved. For a bug tracking system, the goal is usually to fix some perceived de-
fect. The data relevant to this goal is gathered together and expressed as the initial
kids:FactSituation. One can then start a CARE Loop for dealing with the bug in a
node as discussed above.

7 Use Cases for the KIDS Framework

We now present some use cases for the KIDS Framework, in four domains that differ
very much from each other.

7.1 Customer Support

Customer support is a broad area characterized by problem solving activities for issues
raised by the customers of a company. Issue tracking systems form an important part of
customer support, although many other activities also come under the general purview
of customer support, such as product sales and upgrades. In this section, we focus on
issue tracking and resolution, the running example introduced in Section 3.

Obviously, rapid response to customer issues is an important goal of any company.
Maximizing the automation of handling known issues whenever economically possible
will not only improve issue response time but will also free support and customer per-
sonnel to focus on newly emerging issues that require a great deal of collective human
experience and intelligence. That is why applications developed in this domain are in
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constant flux, due to the never ending demands for automation. Three challenges arise
from such automation demands: 1) achieving economical automation, 2) designing
the application to enable the rapid deployment of such automation, and 3) achieving
precise articulation and provenance of knowledge gained from resolved issues.

As with many problems, attempting to automate everything at once is much too
difficult and likely to fail. Accordingly, it is essential that the problem be divided into
smaller phases. This is especially important for customer support where the different
stages of problem solving have very different levels of complexity. Automating data
collection is much simpler than parsing the collected data. Parsing, in turn, is easier
than automating diagnosis. Finally, automating remediation is the most difficult of all.
This suggests that the overall problem be divided into the four phases just described.
However, given the complexity of each of these phases, each of them, especially the
later phases will need to be further subdivided. Since each of the major phases is itself
a decision making process, this leads to the overall decision making process shown in
Figure 9.

Issue i
Identification Issue Cause Solution

Verification Determination Plan

»  Facts »  Facts

Perceptions Perceptions Perceptions

Hypotheses Hypotheses

Directives

no yes no Y yes nones no
If not converging, consider another alternative
identified? verified? high confidence? verified solution?

Hypotheses Hypotheses

Directives

Directives Directives

Figure 9: Diagram of the Customer Service decision making process, showing how the
steps in a decision making process can themselves be decision making processes

Each of the phases in Figure 9 represents an important kind of decision that must
be made in the process. Each decision point has three choices. If a phase is successful,
the next phase begins (or for the last phase, the process completes). If a phase is
unsuccessful, it is repeated, but if too many repetitions occur, the process goes back
to one of the previous phases. Note that the overall process is similar to the CARE
Loop: Issue Identification is analogous to Enactment, Issue Verification is analogous
to Classification, Cause Determination is analogous to Assessment, and Solution Plan
is analogous to Resolution. When the overall process is regarded as a CARE Loop, an
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activity need not immediately continue to the next activity but rather may repeat. This
is an example of the kind of branching that was incorporated into the KIDS ontology.
Another aspect of the Customer Service decision making process is the hierarchical
decomposition in which each activity is itself another CARE Loop.

7.2 Healthcare

Patient care is a demanding task driven by data, observations, knowledge, and proce-
dures; all growing in amount and complexity at an ever increasing pace as new medical
sensors are developed and deployed. Now that patients are wearing an increasing num-
ber of sensors, practitioners will be continuously responsible for all of their patients
whether the patients visit the doctor’s office or not. So it is no surprise that situation
awareness is at the center of patient care. While the collection of Electronic Medical
Records (EMR) — a mix of data describing measurements, images (and reads), observa-
tions, diagnosis, and treatments — is extremely important, these records are by no means
sufficient. EMRSs neither organize data into meaningful categories nor describe who has
examined the data, when the data were examined, which diagnosis was derived, and
how it was derived. When combined with increasing cost pressures and the potential
for malpractice lawsuits, the need for better records is even more compelling.

Practitioners use many methods to care for patients; some of the frequently used
terms are: evidence based medicine, standard of care, differential diagnosis, and per-
sonalized/precision medicine. There are numerous applications supporting healthcare
practitioners; however, they capture only a small part of their tasks; furthermore, they
are proprietary and opaque, making major extensions, personalization, and fast evo-
lution practically impossible. What is required is a system that helps practitioners in
all phases of the treatment, including allowing practitioners to communicate with this
system in their language, transforming measurements into a compact form, providing
rigorous provenance, alerting practitioners about abnormalities, allowing major exten-
sions and personalization, and supporting evolution of the system.

As with the customer service use case in Section 7.1 above, the decision making
process is too complex to be handled all at once, and even the various phases will
themselves be complex decision making processes. In the following we will analyze
Classification activities from the point of view of the KIDS ontology with its CARE
Loop.

Patient care starts with the gathering of evidence, which comes in the form of ob-
served facts. Facts consist of measurements such as lab results, various kinds of images,
and bedside monitor waveforms. There are over 700 kinds of lab test, over 400 of which
are quantitative (MIMIC, 2016). Using a large variety of classification techniques, ob-
servations are transformed into perceptions. For example, sensor measurements are
transformed into how much they deviate from the norm. Facts are complemented by
clinician observations which are treated as perceptions. The perceptions will be as-
sessed to arrive at one or more diagnoses (hypotheses) determining the root cause of
the observations along with an associated confidence. The next step is a treatment plan
resulting in directives. A directive can be a specific treatment and/or more tests based
on the standard of care. The enactment of the directives will create more facts and the
cycle starts again until the hypotheses show that the target has been reached or nothing
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should or can be done any more. Most of these steps are and will increasingly be com-
puter supported, allowing the permanent supervision of patients based on a constant
stream of facts, perceptions, diagnoses and directives. New computerized knowledge
has to be used immediately once it has been verified and released. Any support has
to be considered in the context of personalization; the application of knowledge has
to be based on preferences of individuals or teams (Personalized Medicine Coalition,
2014).

Consider the classification activity that transforms facts into perceptions. With over
400 kinds of lab test as well as many other kinds of observation, this is already a daunt-
ing task. The various observations have many dimensions and ranges, and the ranges
often depend on the situation of the patient. Therefore, determining the conditions for
notification of a serious or critical condition is a very demanding task. Here is an exam-
ple: the risk of cardiac arrest can be seen in a blood test hours ahead (Guerra, Gawlick,
Bizarro, & Gawlick, 2011). Unfortunately, this requires understanding a complex in-
terrelation between at least ten measurement values, which is difficult even for the best
expert and is often not doable at all. Yet computers are very good at this. There is a
real need to integrate the results of computer models like this example with the clin-
ical decision making process performed by practitioners. The KIDS framework for
ontology-driven decision making can contribute to this need by classifying facts and
using the same qualitative classification for many types of facts that practitioners use;
for example, normal, guarded, serious and critical. The goal is to use relatively few
classifications to help practitioners to not only take advantage of complex computer
models but also achieve situation awareness.

7.3 Cloud Services

The premise of cloud computing is that one can achieve economies of scale by pool-
ing physical resources to provide virtually unlimited resources. This is only possible
by dynamically allocating resources to meet customer needs. Accordingly, situation
awareness is essential, not only for the cloud service as a whole but also for individ-
ual customers. Customers have service level agreements (SLAs) with the cloud service
provider that must be met. Conformance to SLAs without excessive resource consump-
tion is therefore one of the critical requirements of cloud operations. Cloud systems
are often multitenanted, where a tenant is a group of users who share a software in-
stance, each of which has specific privileges; but in other cloud systems, a tenant is
a single user who has exclusive access to a virtual system. These operations have a
need for continuous monitoring of key performance metrics so that impending SLA
violations can be predicted and avoided or quickly resolved. A typical cloud operation
has to monitor, diagnose, and manage millions of hardware and software components
of the data centers, networks, server machines, virtual machines, operating systems,
databases, middleware, applications, etc., in the operator’s and tenants’ private, pub-
lic, and hybrid clouds. Traditional IT techniques not only are far too labor intensive
for such an environment but are also insufficiently responsive. Obviously, such tech-
niques cannot scale up to the cloud. Cloud services require continuous measurement
of important vital signs, time-series analytics, MSET models (cf., Section 4.2, sys-
tem response models, predictive anomaly detection, classification based on machine
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learning, automatic diagnosis and prognosis, decision support, and control capability
through automated decision making processes.

Cloud operation requires Big Data systems to handle the volume of machine data
carrying the important vital signs for system health, but sensor or data fusion through
Big Data is inadequate. Minimally, it needs a framework like real-time complex event
processing (CEP) to perceive the situations involving certain relations among a family
of entities and correlations of vital measures of the entities to support decision mak-
ing. The KIDS framework can collect data relevant to one tenant from different points
in time into a situation that can be used for rapid, automated decision making. De-
cisions will result in requests to acquire or to release resources as well as providing
warnings about real or potential problems. Using an orchestration architecture such
as the one shown earlier in Figure 8, KIDS provides an effective framework for the
situation awareness needed for managing resource allocation, detecting anomalies and
diagnosing the causes of the anomalies in large scale cloud operations.

The above requirements for predictive analytics call for the framework to enable
information fusion across various special types of perceptions, such as the observation,
objective, prediction, simulation, seasonal forecast, etc., deduced by different clas-
sification processes and different sources of data for related entities. However, Big
Data analytics and real-time CEP technologies have remained largely disconnected. It
requires a framework like KIDS to integrate them and to augment them with other es-
sential technologies for large scale state management, such as bitemporal databases,
expression filters, registered queries, and forward-chaining and backward-chaining or-
chestration engines to integrate inference engines such as Rete networks (Forgy, 1982),
Bayesian networks, MSET, Support Vector Machines, Neural Networks, OWL reason-
ers, Online Analytical Processing, and miscellaneous time-series algorithms Chan et
al..

7.4 Internet of Things

The Internet of Things (IoT) represents a generic class of applications that could poten-
tially benefit from the KIDS framework. In each of these applications, a large number
of facts is collected. These facts need to be represented as compact and intuitive per-
ceptions, which will be used to create hypotheses, and finally directives are created to
respond to that situation. Furthermore, the various activities that implement this pro-
cess continuously evolves. In terms of the KIDS ontology, this means that the utterance
situations (process level) are being interpreted as focal situations (data level), and a de-
cision making process must make decisions about how to change the activities being
performed in the phases of the CARE Loop.

Rather than discuss IoT applications in general, we will analyze a single IoT ap-
plication to illustrate how the KIDS ontology-driven decision making framework can
be used for IoT problems. The problem is known as No-Trouble-Found (NTF), also
called No-Faults-Found (NFF) in the prognostic literature (Accenture Communications
& High Tech Solutions, 2016). The NTF problem is that electronic systems and elec-
tronic compute-and-control components that are integrated with expensive capital as-
sets in manufacturing, utilities, and transportation, have internal mechanisms that gen-
erate an alarm indicating failure. When this happens, the electronic product or compo-
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nent may be replaced at a cost to the supplier under warranty replacement or a service
contract. The electronic product or component is then returned to the supplier or dis-
tributor and tested in a services testing laboratory. Between 25% and 70% of the time,
depending upon the segment of the electronics industry, the product or component that
was returned operates properly when tested. The cost of replacing products or com-
ponents that should not have been returned has been estimated as about $2B per year
to the industrial sectors of manufacturing, utilities, and transportation. Mitigating the
NTF problem is a significant challenge which would have significant financial advan-
tages to many industrial sectors.

For example, in the business-critical enterprise computing industry, NTF rates ex-
ceed 20% for “Field Replaceable Units” (FRU), which are internal components and
system boards that are swapped upon indication of failure.> For military defense elec-
tronics, NTF rates are greater than 50%. In the consumer electronics industry, NTF
rates for returned products are 68% Accenture Communications & High Tech Solu-
tions. In the commercial airline industry, the “big 3” carriers in the USA all have
$100M losses per year due to NTFs in aviation electronic systems. High NTF rates are
not only a warranty cost issue for electronics systems and components manufacturers,
but high NTF rates also cause additional collateral problems by:

e Diverting the supplier’s engineering resources to field issues;
e Increasing FRU sparing levels in FRU stocking depots around the world;

e If a component has a 50% NTF rate, one needs to stock 50% more components
in sparing depots;

e Decreasing the stock of components available for new revenue systems;
e Increasing component scrap rates;
e Increasing system repair cycle time; and

e Decreasing customer satisfaction and brand loyalty

Sun Microsystems performed in-depth root-cause analyses of NTFs in electronic
systems and found that the leading causes of NTFs in electronic systems and FRUs are
the following (Gross & Whisnant, 2009):

o Transient/Intermittent Faults
e Threshold Limits on Noisy Physical Variables
e Sensor Degradation Events

e Human Errors During Testing and Diagnosis

3This does not mean that 20% of components in enterprise computers fail; it means that of the “failed”
FRUs returned to the systems’ manufactures, 20% are discovered to be NTF.
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For the rest of this section, we discuss how the KIDS Framework coupled with
IoT sensor analyses using pattern recognition could mitigate and avoid NTFs for IoT
industrial customers in the manufacturing, utilities, and transportation industries.

The NTF-Mitigation Process expressed as a CARE Loop leveraging IoT telemetry
is the following:

o (lassify quantitative facts to derive qualitative perceptions

— IoT transducers provide digitized time series archived as Fact data

— Advanced statistical machine learning techniques such as MSET are used
to classify anomalies in the Fact data

— Perceived anomalies may or may not be a Failure
e Assess the perceptions to infer the hypotheses

— Advanced statistical machine learning using null hypothesis testing tech-
niques such as SPRT assesses the anomalies to infer the hypotheses

— Three hypotheses are tested at each evaluation stage: True Failure, True
NTE, Proceed to Next Test

e Resolve the hypotheses to formulate directives

— If True Failure: Send to scrap/recycling
— If True NTF: Return to Services’ Spare Parts Stock
— If Unresolved, Proceed to Next Test

e Enact the directives to collect new facts, and
e Repeat the loop for the next test.

e As the CARE Loop above proceeds, it is monitored to learn patterns that can
improve real-time field sensing to systemically mitigate NTFs from the installed
base.

Application of the KIDS framework and analysis has led to a systematic iterative
procedure used in a systems testing laboratory when units are returned from the field
under warranty or service-contract returns. This particular use case for driving reduc-
tions in NTFs is a good example of a case where there is added ROI by breaking the
overall process into an iterative sequence of test evaluations, each with the same hy-
potheses and with similar information collected and knowledge derived, but with the
advantage of proceeding from the quickest, easiest, and cheapest testing, to iterations
involving incrementally more detailed pattern recognition challenges (and greater test-
ing time). In Section 7.1 we discussed modular decomposition of the problem space
into coherent modular components. For the IoT NTF-mitigation use case, we do tem-
poral decomposition. The benefit, of course, for partitioning the application of KIDS
methodology in a linear sequence progressing from cheap to more sophisticated prog-
nostics, is that the unit-under-test (UUT) may be confirmed to be failed/degraded at the
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earliest time, and the testing process is then terminated and the UUT can be discarded,
recycled, or refurbished. However, the greatest challenge for NTFs across multiple
electronics industries is for systems/components that power on, but have subtle or in-
termittent internal degradation modes that only emerge under a more sophisticated suite
of thermal/electrical/performance stress testing.

For units that power on, the simplest testing sequence (which can be conducted
on large batches of units in parallel) is cycling in a thermal chamber while powered
on, and cycling through the full range of ambient temperatures that the units are qual-
ified for. This simple step is motivated by the recognition that many fault modes for
electronic systems are accelerated by or triggered by spatial and temporal thermal gra-
dients. This initial step will quickly eliminate units that are truly broken or have in-
ternal thermal-acceleration degradation modes. During this (and subsequent) testing
sequences, digitized telemetry from all available internal transducers is continuously
recorded into a buffer. Although the telemetry signals from multiple sensors and mul-
tiple UUTs would be overwhelming for a human tester to digest, pattern recognition
can be used to simplify this complexity by making a binary-hypothesis decision: ei-
ther the UUT is degraded/failed (in which testing is terminated); or the UUT may be
NTF, in which case one should continue to the next test sequence and collect additional
telemetry data. Of course, the final “true NTF” determination cannot be made until the
conclusion of the final testing sequence.

There are at least two additional test sequences for simple electronic components.*
In the second sequence, a pre-programmed script is run on the UUT via firmware that
stresses the UUT in a manner that maximizes the utilization of any internal ICs, CPUs
GPUs, ASICs and memory modules. For this component of the testing the desire is
to “stretch the envelope” through the full performance range the unit is expected to
experience during normal operation.

In the final test sequence, for units that have shown no evidence of degradation
to this point, the unit is tested with a deterministic dynamic stress script (which may
or may not be the same stress script used in the previous sequence), and all telemetry
signatures from all available IoT sensors are compared to identical telemetry coming
from a “golden system” (i.e., a new system for which the best engineering judgment
is that it is performing as optimally as possible). Note that the “golden system” that is
running the same stress script as the UUT may be running side by side on the same test
bench. But more advantageously, the telemetry dynamics from the “golden system” can
be pre-archived and the telemetry dynamics from very many UUTSs can be analyzed by
a machine learning technique such as MSET, using the telemetry dynamics from the
“golden system” for the training purposes. This allows parallel testing of large batches
of “suspect” NTF units for maximized facility throughput.

In the KIDS CARE Loop for IoT NTF characterization and mitigation, the Agent
can be a human testing engineer and would be appropriate if expensive components are
tested individually and infrequently. But for large scale parallel testing operations with
large batches of components, the KIDS process outlined here is also quite amenable to
autonomous agent control as illustrated schematically in Figure 10.

4Still more test sequences would be employed for complex computing systems that may contain hundreds
of internal transducers.
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Figure 10: KIDS Sequential Hypothesis Flowchart for Electronic Systems and Com-
ponents Evaluated as “Suspect NTFs”

8 Conclusion and Future Work

This article has developed a formal, ontology-driven framework for the process of de-
cision making. Our framework may be regarded as an ontology-based formalization
of the existing KIDS model, but we have added many new features and solved two of
the outstanding problems in the formalization of decision making processes. Like the
KIDS model, our ontology classifies both the kinds of data and the reasoning activi-
ties that are used to develop situation awareness, but our ontology develops the notion
of situation much more thoroughly than in earlier work, aligning it with well-known
theoretical foundations for situations. In particular, the classification of situations into
focal, utterance and resource situations is a fundamental feature of our ontology. An-
other new feature of our framework is the flexible process model that supports either
synchronous or asynchronous processing and allows the process to explore alternative
or concurrent branches. In particular, we developed several notions of time and time
series. Relatively detailed descriptions of implementation techniques were presented to
make the case that the framework is feasible. The applicability of the framework was
illustrated by four use cases from different domains. The four use cases were for cus-
tomer support, healthcare, cloud service systems and the No-Trouble-Found problem
in the Internet of Things. We feel that these use cases give a compelling justification
for continued development of our framework.

Although the KIDS model had already been developed as a mathematical model
in a series of earlier articles, it was nevertheless a substantial challenge to develop the
KIDS ontology. The KIDS ontology introduces many classes that were not explicit in
the KIDS model, making distinctions such as subclassing situations, and adding many
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axioms not in the KIDS mathematical model. It was also discovered that some base
classes in the KIDS model could be constructed using OWL class constructors, and the
execution model of the KIDS model could be generalized in a way that has significant
benefits for some of the use cases. The integration with the PROV-O PROV-O ontology
not only simplified the KIDS ontology by reusing PROV-O, but also allows one to use
PROV-O compliant software tools and techniques for maintaining provenance of both
data and activities.

As with any ontology engineering process, during the development of the KIDS on-
tology there were many lessons learned. Unlike many ontology development projects,
we had the advantage of having a mathematical model on which to build. This model
was based on many use cases as well as the OODA loop. Nevertheless, the develop-
ment of the KIDS ontology was not straightforward. As already noted, we found that
some classes could be derived from others and there were a number of implicit assump-
tions, now captured as axioms. Integrating KIDS with other ontologies was another
challenging activity. While integrating KIDS with PROV-O was relatively easy, our
attempt to integrate KIDS with STO encountered a number of obstacles that ultimately
prevented us from reusing STO, such as incompatibility with OWL DL reasoners and
insufficiently general constructs.

Another issue concerned ICOM and the Rationale Ontology as mentioned in Sec-
tion 2. ICOM was not fully integrated with the KIDS ontology, and the Rationale On-
tology was not integrated at all. The difficulty is that ICOM and the Rationale Ontology
have many classes that are similar to those in the KIDS and PROV-O ontologies, yet
differ semantically. Bridging between these ontologies remains a significant challenge,
but would have significant benefits, such as improved integration with collaborative
work environments. As future work, we plan to investigate how to bridge the KIDS
ontology with [COM and the Rationale Ontology.

An even more interesting prospect for future work is to add services for storing
and transporting the data and activities of a decision making process, especially the
situations. One possible approach for providing these important features is to integrate
the KIDS ontology with the Content Management Interoperability Services (CMIS)
ontology (Miiller & Baclawski, 2015). This would allow one to use one of the large
variety of content management systems as the basis for a decision making system.
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