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Abstract—Combining independent observations is commonly
performed by using a least squares technique, as it is thought
that this is necessary to achieve an optimal solution. The purpose
of this article is to show that this is not always the case. The
particular example combines observations that are exponentially
distributed. One application of this technique is to determine the
time of a singular event which initiated a set of decay processes
having known half-lives. The time of the singular event decays
backwards in time with an exponential distribution. We find
that the accuracy of this method is significantly better than the
accuracy of a least squares technique. The improved accuracy
can be important for applications that require combining many
noisy observations, such as situation awareness.
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I. INTRODUCTION

The combination (or fusion) of independent observations is
a fundamental mechanism of probability theory that is impor-
tant for many purposes. For example, situation awareness (SA)
is the perception of environmental elements and events with
respect to time or space, the comprehension of their meaning,
and the projection into the future [3]. To achieve SA, it is
typically necessary to combine (or fuse) multiple, independent
sources of noisy information. Because of the noisiness of
the sources of information, each observation from a source
is a probability distribution that specifies the accuracy of the
observation. Fusing the observations requires many issues such
as transforming the observations so that they are comparable
in time and space and then fusing the probability distributions
of the distributions. This article is about the fusion of the
distributions.

Since the early nineteenth century when the method of
least squares was developed by Gauss [7], it has been a
common practice to use a least squares technique to fuse
a set of independent observations. While such a method is
well-justified and optimal if observations are normally dis-
tributed, it is not optimal for all distributions. To illustrate this
phenomenon, we consider the case of a set of independent
observations that are exponentially distributed, and we show
that the additional information about the distributions can have
a significant impact on accuracy.

The Gauss-Markov theorem states that in a linear stochastic
model whose errors have expectation zero, equal variances
and no correlations, the best linear unbiased estimators of the
coefficients of the model are the least-squares estimators. [8],
[9] This result makes no assumptions about the distributions

beyond their means and variances, and so it can only yield
simple estimation values, not distributions. When one knows
the distributions of the errors, one can not only make an
estimate, one can also determine a probability distribution. In
other words, both the inputs and the outputs of the information
fusion are probability distributions. The normal distribution
is the best known example of this process. The distribution
of the fusion of a set of independent normally distributed
observations is also normally distributed. Moreover, this result
does not depend on any other assumptions or results, such as
a least squares technique or Bayes’ Law [2], [10]. The fact
that the normal distribution is closed under fusion makes it
an especially useful distribution for combining independent
observations. In this article, it is shown that the class of
exponential distributions is also closed under fusion. Whether
there are other classes of distributions have this property is an
interesting question.

Time reversal is a useful technique for audio and radio
signaling and detection applications. [4]–[6] In this technique,
a received signal is recorded, reversed, and sent back to the
original source. The time reversal theorem considered here
differs from the technique for signaling and detection in that
we are concerned with stochastic phenomena in which the
time of an event (or, more precisely, knowledge of the time
of an event) decays exponentially backwards in time. The
usefulness of the theorem is due to the improved accuracy
of the estimation, not the time reversal itself.

II. THE CLASS OF EXPONENTIAL DISTRIBUTIONS

An exponential distribution models the behavior of a con-
tinuous, memoryless waiting time. In other words, if one has
been waiting a period of time, then the conditional distribution
starting at the end of the period is the same as the distribution
starting at the initial time. The behavior is determined by just
two constants: the starting point s and the expected duration
τ > 0 after the starting point s. Let ED(s, τ) denote the
distribution in this case. If X is a random variable whose
distribution is ED(s, τ), then the probability density of X is
given by:

dens(X = x) =

{
0, if x < s,
1
τ
e−(x−s

τ
), if x ≥ s.

The expectation of X is easily seen to be s + τ , and the
variance is τ2. The exponential distribution models the time
between independent occurrences in a sequence that occurs at



a constant rate. The rate is given by λ = 1
τ . One can also

regard the exponential distribution as modeling a quantity that
decays at the rate λ. When viewed in terms of a decay, one
usually takes the base of the exponential to be 2 rather than e,
and the parameter analogous to the mean duration τ is the half-
life, which is commonly written t1/2. The half-life is related
to the mean duration by the formula: t1/2 = ln(2)τ . The half-
life is the median duration, so the median of the distribution
is s+ t1/2.

The constraint that τ be positive is not essential, and one
can easily generalize the class of exponential distributions so
that τ can be any real number. If τ = 0, then the distribution
is a discrete distribution with all probability concentrated at
s (i.e., the density is a delta function). Having the distribu-
tion ED(s, 0) means that an observation has value s with
probability 1. When τ < 0, the observation decays in the
reverse direction. The probability density of a random variable
X whose distribution is ED(s, τ) for a negative τ is given
by:

dens(X = x) =

{
−1
τ
e−(x−s

τ
), if x ≤ s,

0, if x > s.

Given a random variable X whose distribution is ED(s, τ),
the random variable X − s will have distribution ED(0, τ),
and the mean of X − s is τ . If τ is nonzero, then X−s

τ has
distribution ED(0, 1). As already discussed above, the median
of ED(s, τ) is s+ln(2)τ . Because this distribution is so highly
asymmetric, it is more reasonable to use the median rather than
the mean when it is necessary to reduce the distribution to an
estimate consisting of a single number.

III. INFORMATION FUSION OF EXPONENTIAL
DISTRIBUTIONS

We now compute the distribution of the fusion of a set
of N independent exponentially distributed random variables.
The following is the general case:

Theorem 3.1: Let Xi be a set of independent random
variables whose distributions are ED(si, τi), for i = 1, . . . , N .
Write Y for the fusion of the random variables {Xi}.

1) If τi > 0 for every i, then Y has the distribution
ED

(
maxNi=1(si),

(∑
( 1
τi

)
)−1)

.
2) If τi < 0 for every i, then Y has the distribution

ED
(

minNi=1(si),
(∑

( 1
τi

)
)−1)

.

Proof. We first consider the case in which all the τi are
positive. The probability density of Y is given by normalizing
the product of the densities of the random variables Xi as
follows (see [1]):

dens(Y = y) =

{
0, if y < si for some i,

CΠN
i=1e

−
(
y−si
τi

)
, if y ≥ si for all i,

where C is the normalization constant such that this formula
defines a probability density function. Now y ≥ si for all i
if and only if y ≥ maxi(si). Let s = maxi(si). The formula
above may then be written as follows:

dens(Y = y) =

 0, if y < s,

Ce
−
∑N

i=1
( y−si

τi
)
, if y ≥ s.

The exponent in the formula above may be written as follows:

−
N∑
i=1

(
y − si
τi

)
= −

N∑
i=1

(
y

τi
− si
τi

)

= −
N∑
i=1

(
y

τi

)
+

N∑
i=1

(
si
τi

)

= −y
N∑
i=1

(
1

τi

)
+

N∑
i=1

(
si
τi

)
Let

τ =
1∑(
1
τi

) ,
or in terms of the rate parameters, λ =

∑N
i=1 λi. Also let

D =
−s
τ

+

N∑
i=1

(
si
τi

)
.

Note that D does not depend on y. One can then write the
sum above as follows:

−
N∑
i=1

(
y − si
τi

)
=
−y
τ

+

N∑
i=1

(
si
τi

)

=
−y
τ

+
s

τ
− s

τ
+

N∑
i=1

(
si
τi

)
=
−y + s

τ
+D

The probability density when y ≥ s may then be computed as
follows:

Ce
−
∑(

y−si
τi

)
= Ce

−y+s
τ +D

= Ce−
(
y−s
τ

)
eD

= CeDe−
(
y−s
τ

)
Since CeD is a constant independent of y, it follows that Y
is exponentially distributed with distribution ED(s, τ). In the
same way, one can also compute the distribution of the fusion
when all of the τi are negative. The only difference is that the
maximum of the {si} is replaced by the minimum. The result
then follows.



In the special case where all of the τi are the same, the
formula simplifies to the following:

Corollary 3.2: Let Xi be a set of independent random
variables whose distributions are ED(si, τ), for i = 1, . . . , N .
Write Y for the fusion of the random variables {Xi}.

1) If τ > 0, then Y has the distribution
ED

(
maxNi=1(si),

τ
N

)
.

2) If τ < 0, then Y has the distribution
ED

(
minNi=1(si),

τ
N

)
.

The case in which some of the τi are positive and some are
negative does not result in an exponential distribution, so it is
not considered.

IV. EXPERIMENTAL OBSERVATIONS

We now consider an experiment in which a particle splits
into a set of N particles, each of which subsequently decays
independently. Suppose that the half-lives of the products are
known to be {hi|1 ≤ i ≤ N} and that one can observe the
time when each of the products decays. The splitting of the
original particle is called the singular event. The problem is
to determine the time when the singular event occurred.

Theorem 4.1: If a singular event results in N independent
exponential decay processes with half lives {hi|1 ≤ i ≤ N},
then the time of the singular event decays backwards in time
from the time when the first decay product is observed, with
a half-life equal to

(∑
( 1
hi

)
)−1

.

Proof. Let t be the time when the original particle split,
and let {ti} be the times when the product particles are
observed to decay. Then the duration from t to ti has the
distribution ED(t, hi/ ln(2)), and the duration from ti to
t has the distribution ED(ti,−hi/ ln(2)). The latter set of
distributions are all observing the same time t, and they are
assumed to be independent, so Theorem 3.1 applies. Therefore,
the distribution of the time t is

ED

(
N

min
i=1

(ti),
1∑

( ln(2)
hi

)

)
= ED

(
N

min
i=1

(ti),
1∑
( 1
hi

)
/ ln(2)

)
.

The result then follows.

In the special case where all of the half lives are the same,
the formula simplifies as follows:

Corollary 4.2: If a singular event results in N independent
identically distributed exponential decay processes with half-
life t1/2, then the time of the singular event decays backwards
in time from the time when the first decay product is observed,
with a half-life equal to t1/2/N .

V. THE LEAST SQUARES METHOD

We now apply the least squares method to the scenario of
Section IV above. For simplicity we consider only the case
where the N exponential distributions have the same half-life

Fig. 1. Information Fusion versus the Least Squares Method for N=4

t1/2. The mean lifetime is τ = t1/2/ ln(2), and the variance is
τ2. Let xi be the actual decay observation for the ith product
particle. Each decay observation Xi may be written in the form
t + τ + ei, where ei is a random “error” having mean 0 and
variance τ2. Therefore each Xi − τ has mean t and variance
τ2. The least squares estimate for t is the sample average
1
N

∑N
i=1(xi − τ) =

(
1
N

∑N
i=1 xi

)
− τ . This estimate has

variance τ2/N and standard deviation τ/
√
N . The information

fusion and the least squares method are compared in Figure 2.

Least Squares Information Fusion

Estimate
(

1
N

∑N
i=1 xi

)
− τ minNi=1(xi)− ln(2)τ

N

Variance τ2/N τ2/N2

Std Dev τ/
√
N τ/N

Fig. 2. Comparison of Information Fusion and Least Squares Methods

It is apparent that information fusion will be more accurate
than the least squares technique, especially for large N . For ex-
ample, consider the case in which t = 5, τ = 1 and N = 4. In-
formation fusion yields the distribution ED(min(ti),−0.25).
The median value for min(ti) is t+ln(2)/4 = 5.17329. If this
experiment is run many times, the values for min(ti) will vary.
To show a representative sample of the behavior, the quartiles
are shown for the two methods in Figure 1, and in the later
graphs. The peaks of the exponential distribution should all
be the same, but the graphs do not show this due to round-off
errors.

The least squares method yields the estimate
(
1
4

∑
ti
)
− 1.

This estimate is normally distributed with mean 5 and standard
deviation 0.5. Accordingly it will be within 0.3372 of 5 about



half of the time. The quartiles are therefore at 4.6628, 5
and 5.3372. These are shown in Figure 1. The information
fusion distribution is approximately 4 times more accurate
than the least squares distribution. Half of the improvement
is due to the fact that the normal distribution is a two-tailed
distribution while the exponential distribution is a single-tailed
distribution. The other half of the improvement is the result
of the improvement in the variance.

In Figure 3 the density functions are compared for the
case in which N = 16. In this case, the information fusion
distribution is approximately 8 times more accurate than the
least squares distribution. In general the information fusion
distribution will be approximately 2

√
N times more accurate.

The factor of 2 in this approximation is somewhat arbitrary,
and represents the fact that the exponential distribution is
single-tailed, while the normal distribution is double-tailed.
Based on the estimates alone, one might take the factor to be
1.4. See Figure 5 which compares the estimates for various
values of N .

Fig. 3. Information Fusion versus the Least Squares Method for N=16

In Figure 4 the density functions are compared for the case
in which N = 1. Here there is no information fusion, so it is
only comparing the exponential distribution with the normal
distribution.

VI. CONCLUSION

We have shown an example for which one can significantly
improve the accuracy of the fusion of observations when
their probability distributions are exponential, compared with
techniques, such as a least squares technique, that do not
require specific knowledge of the probability distributions.
Using information fusion of the distributions rather than a
least squares estimation has the further advantage that the
result of the method is a probability distribution rather than
an estimated value and a standard deviation that bounds the

Fig. 4. Information Fusion versus the Least Squares Method for N=1

Method N (25th %ile)-5 (75th %ile)-5

Information Fusion 1 -0.693 0.405

Least Squares 1 -0.674 0.674

Information Fusion 4 -0.173 0.101

Least Squares 4 -0.337 0.337

Information Fusion 16 -0.043 0.025

Least Squares 16 -0.169 0.169

Fig. 5. Estimates for Information Fusion and Least Squares Methods

error. Consequently, the result may, in principle, be used as
input for further computations that also use fuse the full
probability distributions. Combining several such operations
will ultimately enable improved results for applications that
require such complex analyses, such as situation awareness.

The fusion of exponential distributions and least squares
methods were compared for an example in which a singular
event initiates an independent set of decay processes having
known half-lives. The result can be viewed as reversing time,
because our knowledge of the time of the singular event decays
backwards in time with an exponential distribution whose
parameters were computed. The accuracy of this technique
was found to be significantly better than the accuracy obtained
by using a least squares method.

Fusion of precisely known distributions has many advan-
tages, but there are only a few examples of classes of prob-
ability distributions to which the technique is currently being
applied. Introducing additional classes of distributions that are



closed under fusion could have a significant impact on the
accuracy of estimation in a variety of domains.
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