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Motivation

 The Semantic Web is a framework for 
expressing logical statements on the Web.

 It does not specify a standard mechanism 
for expressing probabilistic statements.

 Use cases can be used to evaluate 
mechanisms for expressing probability on 
the Web.

 Use cases drive goals to be achieved by a 
framework for probability on the Web.
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Outline

 Use cases
– Representative sample
– Significant overlap among the use cases

 Goals
– Use case driven
– Emphasis on interoperability and evaluation
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Use Cases

 Communication within a community
 Search within scientific and engineering 

collections
 Supporting scientific and engineering 

projects
 Abductive Reasoning
 Information Fusion
 Decision Support
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Communication in a community

 Probabilistic statements are fundamental to many 
communities:

– Science
– Engineering
– Medicine

 Probabilities are meaningful only within the context of a 
stochastic model, which itself has a context (not 
necessarily probabilistic).

 Bayesian networks are an example of a stochastic 
modeling technique for specifying dependencies among 
random variables.
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Search within collections

 Semantic annotation
– Information retrieval
– Classification

 Bayesian classifiers
– Improves classification under uncertainty
– Must be customized for each search criterion

 Combined technique
– Medical diagnosis
– Situation assessment
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Project Support

 A large project will produce a large document 
corpus.

 An engineering or scientific project will produce 
substantial databases of experimental data.

 Probability is the language for expressing the 
experimental results.

 There is a need for a common language to 
integrate the document corpus with the 
experimental data.
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Abductive Reasoning

 Finding the best explanation
 Diagnosis and situation awareness are 

examples of probabilistic abduction.
 Bayes’ Law is the basis for probabilistic 

abduction.
 Bayesian networks are a general probabilistic 

mechanism for probabilistic inference.
– Causal inference
– Diagnostic inference
– Mixed inference
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Information Fusion

 Combining information from multiple sources 
– Medicine: meta-analysis
– Sensor networks: multi-sensor fusion

 Fundamental process for situation awareness
– Military situation awareness
– Emergency response management

 State estimation of dynamic systems
– Kalman filter
– Dynamic Bayesian network
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Ontology Based Fusion Use Case Diagram
M. Kokar, C. Matheus, K. Baclawski, J. Letkowski, M. Hinman and J. Salerno. Use Cases 
for Ontologies in Information Fusion. In Proc. Seventh Intern. Conf. Info. Fusion, pages 
415-421. (2004)
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Decision Support

 A decision tree can be used for specifying a 
logical decision.

 Decisions may involve uncertain observations 
and dependent observations so a simple 
decision tree will not be accurate.

 Influence diagrams
– Bayesian network extended with utility functions 

and with variables representing decisions
– The objective is to maximize the expected utility.
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Goals I

 Shared stochastic models
– Common interchange format

 Discrete and continuous random variables
 Static and dynamic models

– Ability to refer to common random variables 
 Medical: diseases, symptoms
 Homeland security: organizations, individuals

– Context specification
 Stochastic inference

– Both causal and abductive inference
– Exact and approximate algorithms
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Goals II

 Fusion of models from multiple sources
– Multi-source fusion
– Dynamic systems and networks

 Reconciliation and validation
– Significance tests
– Sensitivity analysis
– Uncertainty analysis
– Consistency checking

 Decision support
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Goals III

 Ease of use
– Bayesian networks
– Stochastic functions as modules
– Support for commonly used probability 

distributions and models
– Component based construction of stochastic 

models
– Design patterns and best practices

 Compatibility with other standards 
 Internationalization 
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Bayesian Networks
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Stochastic modeling techniques

Logic programming
Data modeling
Statistics
Programming languages
World Wide Web
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Logic Programming: ICL

 Independent Choice Logic
– Expansion of Probabilistic Horn abduction to 

include a richer logic (including negation as 
failure), and choices by multiple agents.

– Extends logic programs, Bayesian networks, 
influence diagrams, Markov decision processes, 
and game theory representations.

– Did not address ease of use
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Logic Programming: BLP

 Bayesian Logic Programs
– Prolog notation for defining BNs
– No separation of logic and BN.

iq(S) | student(S).
ranking(S) | student(S).
diff(C) | course(C).
grade(S,C) | takes(S,C).
grade(S,C) | iq(S), diff(C), takes(S,C).
ranking(S) | grade(S,C), takes(S,C).

student(john). student(pete).
course(ai). course(db).
takes(john,ai). takes(john,db). takes(pete,ai).
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Logic Programming: LBN

 Logical Bayesian Networks (LBN)
– Separation of logic and BN.

random(iq(S)) <- student(S).
random(ranking(S)) <- student(S).
random(diff(C)) <- course(C).
random(grade(S,C)) <- takes(S,C).

ranking(S) | grade(S,C) <- takes(S,C).
grade(S,C) | iq(S), diff(C).

student(john). student(pete).
course(ai). course(db).
takes(john,ai). takes(john,db). takes(pete,ai).
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Data Modeling: PRM

 Probabilistic Relational Model
– Language based on relational logic for describing 

statistical models of structured data.
– Model complex domains in terms of entities, their 

properties, and the relations between them.
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Data Modeling: DAPER

 Directed Acyclic Probabilistic Entity-
Relational
– An extension of the entity-relationship model 

database structure.
– Closely related to PRM and the plate model, but 

more expressive, including the use of restricted 
relationships, self relationships, and probabilistic 
relationships.
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DAPER Example

DAPER Diagram

Data

Bayesian Network

PRM Diagram
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Statistics: Plate Model

 Developed independently by 
Buntine and the Bayesian 
inference Using Gibbs Sampling 
(BUGS) project.

 Language for compactly 
representing graphical models in 
which there are repeated 
measurements

 Commonly used in the statistics 
community
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Programming Languages: OOBN

 Object-Oriented Bayesian Network
 This methodology introduces several notions to 

BN development:
– Components which can be used more than once
– Groupings of BN nodes with a formally defined 

interface
 Encapsulation 
 Data hiding 
 Inheritance

– Inference algorithms can take advantage of the 
OOBN structure to improve performance
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Programming Languages: BLOG

 Bayesian logic
 A first-order probabilistic modeling language under 

development at UC Berkeley and MIT.
 Designed for making inferences about real-world 

objects that underlie observed data
– Tracking multiple people in a video sequence
– Identifying repeated mentions of people and organizations in a 

set of text documents. 

 Represents uncertainty about the number of underlying 
objects and the mapping between objects and 
observations.
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World Wide Web

 XML Belief Network (XBN) format developed 
by Microsoft's Decision Theory and Adaptive 
Systems Group.

 Bayesian Web (BW)
– Layered approach
– Stochastic functions (e.g. BNs, OOBNs) are 

formally specified on the logical layer.
– Stochastic operations are on a separate layer.

 PR-OWL
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