a9y United States

US 20230061280A1

12y Patent Application Publication o) Pub. No.: US 2023/0061280 A1

Rohrkemper et al.

43) Pub. Date: Mar. 2, 2023

(54) ROOT CAUSE ANALYSIS FOR
DETERMINISTIC MACHINE LEARNING
MODEL

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: James Charles Rohrkemper, Harbor
Springs, MI (US); Richard Paul
Sonderegger, Dorchester, MA (US);

Anna Chystiakova, Sunnyvale, CA
(US); Kenneth Paul Baclawski,

Waltham, MA (US); Dieter Gawlick,
Palo Alto, CA (US); Kenny C. Gross,
*scondldo CA (US); Zhen Hua Liu,
San Mateo, CA (US); Guang Chao
Wang, San Diego, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 17/462,592

(22) Filed: Aug. 31, 2021

101

Time-Series
Trairing Dats
St

ats
SOUTTCES

E 1044

Publication Classification

(51) Int. CL.

GOG6N 20/00 (2006.01)
GOGF 16/242 (2006.01)
(52) U.S. CL
CPC .......... GO6N 20/00 (2019.01); GO6F 16/242
(2019.01)
(57) ABSTRACT

Techniques for identifying a root cause of an operational
result ol a deterministic machine learming model are dis-
closed. A system applies a deterministic machine learning
model to a set of data to generate an operational result, such
as a prediction of a “fault” or “no-fault” 1n the system. The
set of data includes signals from multiple different data
sources, such as sensors. The system applies an abductive
model, generated based on the deterministic machine learn-
ing model, to the operational result. The abductive model
identifies a particular set of data sources that 1s associated
with the root cause of the operational result. The system
generates a human-understandable explanation for the
operational result based on the i1dentified root cause.
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ROOT CAUSE ANALYSIS FOR
DETERMINISTIC MACHINE LEARNING
MODEL

TECHNICAL FIELD

[0001] The present disclosure relates to performing a root
cause analysis for results of a deterministic machine learning
model. In particular, the present disclosure relates to apply-
ing an abductive model to a result of a time-series regres-
sion-type deterministic machine learning (ML) model to
identify a set of mnput sources that most influences the
deterministic ML model to generate the result.

BACKGROUND

[0002] Recently, machine learning (ML) models are used
with 1ncreasing frequency for a variety of applications. Two
types of ML models that have significant differences in how
they are trained and how they function are classification-
type ML models and regression-type ML models. Classifi-
cation-type machine learning models are frequently used to
classily or label data points. Classification-type ML models
include character-recognition models, email classification-
type models, models that associate one product with another
product (such as associating a wine to be combined with an
entree on a menu), and facial-recognition type models.
Regression-type ML models are frequently used to perform
prognostics and anomaly discovery. Regression-type ML
models are also used to forecast time-series patterns 1nto the
future. Regression-type models include neural networks,
support vector machines, auto-associative kernel regression-
type models, simple linear regression-type models, and
multi-vanate state estimation technique (MSET) models.

[0003] Typically, although a machine learning model may
identily an anomaly 1n a system, the model may have more
difficulty 1dentifying a root cause of the anomaly. For
classification-type machine learning models, 1t 1s relatively
casier to 1dentily a root cause of a result than for a regres-
sion-type machine learning model.

[0004] When a regression-type model generates an early
warning of a problem 1 a system, human experts are
required to mtervene, to identily devices or sub-systems that
are the root cause of the anomaly, and to fix the problem. In
systems with many monitored assets, the permutations of
possible root causes may be diflicult or impossible for a
human to mvestigate successfully i time to i1dentify and
address a problem.

[0005] Among regression-type ML models, stochastic
models—including neural networks and support vector
machines—apply probabilistic methods to generate predic-
tions based on input data sets. Probabilistic methods typi-
cally are incapable of tracing output alarms back to signal
deviations that caused the alarms. For example, the most
popular conventional ML algorithms, neural networks
(NNs) and support vector machines (SVMs), employ a
technique called “stochastic optimization of weights.” In
practice, running a NN or SVM multiple times with exactly
the same mput signals results 1n output signals that slightly
differ each time. For that reason, NNs and SVMs are trained
by re-running the same data set multiple times (called
“epochs™) and averaging the results. With enough epochs,
the output signals only differ a small amount from a known
result against which a model 1s tramned. However, the
conventional ML algorithmics that employ stochastic opti-
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mization cannot be subjected to a rigorous “propagation of
uncertainty’” root cause analysis to trace a particular result to
a root cause. These stochastic-type ML models cannot
explain the reasons, such as the input signal levels of source
data sources, that result in the lack of triggering a particular
alarm.

[0006] Because rigorous  propagation-of-uncertainty
analyses are not possible for NNs and SVMs, one approach
that has been used to estimate relationships between uncer-
tainties on the input signals and the uncertainties on the
output signals 1s called a “black box” approach. In a black
box approach, small variations are introduced to input
signals and corresponding variations on the output signals
are measured. While a “black box™ approach provides an
estimate of relationships between imnputs and outputs, 1t 1s not
acceptable for satety-critical applications. Using the “black
box™ approach, 1t 1s not possible to prove through analytical
propagation-of-uncertainty analyses that there 1s not some
combination of mput variations that may cause the “black
box™ to 1ssue false alarms (which 1s dangerous for human-
in-the-loop applications), or missed alarms (which can have
catastrophic consequences).

[0007] Similarly, it 1s not possible to work backward
through a “black box”-type analysis to map signal signature
characteristics that generated alarms on the output vanables
to exact signals and signature characteristics on the input
signals. In addition, 1t 1s 1mpossible to work backwards
when no alarm was generated, to determine whether the
absence ol an alarm on an output signal was either (1) due
to the fact that there was no degradation present in any of the
input variables, or (2) degradation was present, but masked
by the stochastic optimization of weights inherent in the
probabilistic ML algorithm.

[0008] Since stochastic-type ML models—including neu-
ral networks and support vector machines—apply probabi-
listic methods to generate predictions, they may be 1nad-
equate for particularly-sensitive applications. For example,
stochastic-type ML models may not be appropriate 1n appli-
cations involving nuclear power generators or real-time
medical operations. In addition, 1t may be difhicult to identify
a root cause of an output from a stochastic-type ML models
since: (1) the models are complex, with multiple hidden
layers of neurons, (2) the models are non-linear, and (3) the
models rely on an entire data set to arrive at a decision.
[0009] In contrast, deterministic-type ML models imple-
ment a mathematical structure that, for a given set of input
values, will return the same set of output values. As a result,
a deterministic-type ML model 1s reversible. A given set of
input values may be determined based on a respective set of
output values. In addition, deterministic-type ML models
have a relatively low rate of false positives and false
negatives relative to stochastic-type ML models.

[0010] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, i1t should not be
assumed that any of the approaches described 1n this section
quality as prior art merely by virtue of their inclusion 1n this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The embodiments are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings. It should be noted that references
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to “an” or “one” embodiment in this disclosure are not
necessarily to the same embodiment, and they mean at least
one. In the drawings:

[0012] FIG. 1 1llustrates a system 1n accordance with one
or more embodiments;

[0013] FIG. 2 illustrates an example set of operations for
identifying a root cause of an operational result of a deter-
minmistic machine learning model in accordance with one or
more embodiments;

[0014] FIG. 3 1s an example of a system for monitoring
components 1 a vehicle 1 accordance with one embodi-
ment;

[0015] FIG. 4 1s an example of a system for monitoring
components 1 a computer system in accordance with one
embodiment; and

[0016] FIG. 5 shows a block diagram that illustrates a
computer system in accordance with one or more embodi-
ments.

DETAILED DESCRIPTION

[0017] In the following description, for the purposes of
explanation, numerous specific details are set forth 1n order
to provide a thorough understanding. One or more embodi-
ments may be practiced without these specific details. Fea-
tures described 1n one embodiment may be combined with
features described 1 a different embodiment. In some
examples, well-known structures and devices are described
with reference to a block diagram form in order to avoid
unnecessarily obscuring the present invention.

[0018] 1. GENERAL OVERVIEW
[0019] 2. SYSTEM ARCHITECTURE
[0020] 3. ROOT CAUSE ANALYSIS FOR PARTICU-

LAR OPERATIONAL RESULT OF A DETERMINISTIC
MACHINE LEARNING MODEL

[0021] 4. EXAMPLE EMBODIMENTS

[0022] 5. COMPUTER NETWORKS AND CLOUD
NETWORKS

[0023] 6. MISCELLANEOUS; EXTENSIONS

[0024] 7. HARDWARE OVERVIEW

[0025] 1. General Overview

[0026] Regression-type machine learning (ML) models
predict operational results of a system based on a given set
of mnput data.

[0027] One or more embodiments include i1dentifying a
root cause of predicted operational results of regression-type
ML models. The regression-type ML model may be a
deterministic-type ML model which, for a given set of input
values, always returns a same set of output values. A system
may 1dentily a root cause of a predicted operational result by
generating an abductive model that 1s a reverse of the
deterministic-type ML model.

[0028] The system trains the deterministic-type ML model
on a set of training data to model non-anomalous operation
of a target system. The set of training data may include
time-series data. The time series data includes a plurality of
signals generated by a plurality of data sources. In one
embodiment, the output levels of the plurality of signals 1n
the tramning data include a range of values that are all
non-anomalous values. The deterministic-type ML model 1s
trained using the non-anomalous training data set to model
non-anomalous operation of the target system. In one
embodiment, the deterministic ML model includes an
anomalous-signal-prediction model to identily variations of
time-series signals from pre-defined operating parameters.
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For example, 1n one embodiment, the deterministic ML
model includes a multi-vanate state estimation technique

(MSET) model.

[0029] The system provides a target data set to the deter-
ministic ML model. As a result, the deterministic ML model
generates a plurality of operational results based on the
values of the target data set. In one embodiment, the
deterministic ML model includes a fault detection model
that generates the plurality of operational results. For
example, the deterministic ML model may include an
anomalous-signal-prediction model that generates a set of
output values based on the target data set. The set of output
values may represent, for each signal of the target data set,
a diflerence between the values of the target data set and a
predicted value generated by the anomalous-signal-predic-
tion model. The fault detection model receives the set of
output values from the anomalous-signal-prediction model.
The fault detection model analyzes the relationships among
the output values from the anomalous-signal-prediction
model to generate the plurality of operational results. For
example, the fault detection model may determine that a
particular sub-set of signals having a particular vanation
from predicted values corresponds to a particular anomaly.

[0030] In an embodiment in which the anomalous-signal-
prediction model 1s an MSET model, the fault detection
model may be a sequential probability ratio test (SPRT)
model. The MSET model may receive as an mput target
time-series data. The time-series data may include a plurality
of signals associated with a plurality of data sources, such as
a plurality of sensors monitoring components of a system.
The MSET model may generate output values for each
signal of the time-series data. The output values correspond
to a diflerence, at a particular point 1n time, between the
value of the respective signal 1n the target set of time-series
data and a value predicted by the MSET model for the
particular signal at the particular point in time. The SPRT
model recerves all the values output from the MSET model.
The SPRT model 1s tramned to identily the relationships
among the signals that make up the input target time series
data. The SPRT model generates operational results based
on the values output from the MSET model. For example, 1f
the time-series data includes signals from one hundred
sensors, the MSET model may generate output values indi-
cating that ten of the signals are anomalous, or outside
pre-defined operating parameters. The SPRT model may
identify four of the ten sensors having anomalous values that
contribute to a particular anomalous operational result.

[0031] The system generates an abductive model to 1den-
tify, for a particular operational result generated by the
deterministic ML model, a root cause of the particular
operational result. In one embodiment, the system 1dentifies
the root cause based on 1dentifying a set of data sources that
have a highest intfluence on the generation of the particular
operational result. In the example 1n which the SPRT model
identifies four of the ten sensors as having the anomalous
values that contributed to the particular anomalous opera-
tional result, the SPRT model may further identity the
remaining six sensors having anomalous values that do not
contribute to the particular anomalous result. An abductive
model generated based on the SPRT model and the MSET
model may recerve the particular operational result as an
input and may generate 1dentification information of the four
sensors as output values.
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[0032] The system generates the abductive model based
on the trained deterministic ML model. For example, in an
embodiment in which the deterministic ML model includes
an anomalous-signal-prediction model that feeds into a
fault-detection model, system utilizes (a) the algorithmic
representations of the relationships among the data sources
and particular operational results specified by the fault-
detection model, and (b) the calculated delta states for the
data source signal generated by the anomalous-signal-pre-
diction model to generate the abductive model.

[0033] In one embodiment, generating the abductive
model includes sequentially varying mnput values of the
signals to the deterministic ML model to identily particular
signals that have a greater influence than other signals on
generating particular operational results. In an alternative
embodiment, generating the abductive model includes vary-
ing the mput values of the signals to the determimstic ML
model 1n a pre-defined pattern that 1s non-sequential. In one
embodiment, generating the abductive model includes
applying propagation-of-uncertainty model to a training data
set for training the deterministic ML model to 1dentify the
particular signals that have a greater influence than other
signals on generating particular operational results.

[0034] One or more embodiments include generating an
explanation for a particular root cause of a particular opera-
tional result. The system may obtain metadata associated
with particular signals and data sources. The system may
apply the metadata to explanation templates to provide a
human-understandable explanation of a root cause of a
particular operational result.

[0035] In one embodiment, the abductive model may
identily a root cause for an operational result that has not
been generated by the deterministic ML model. For
example, a user may be interested to know why, when three
sensors of a system were 1n an anomalous state, the deter-
minmistic model did not generate a particular “failure™ opera-
tional result. The abductive model may receive as an input
a value corresponding to the particular “failure” operational
result to 1dentify which data sources would have the greatest
influence for causing the deterministic ML model to gener-
ate the “failure” operational result.

[0036] In one or more embodiments, the deterministic ML
model 1s represented as a structure query language (SQL)
aggregation function, and the abductive model is repre-
sented as a JavaScript Object Notation (JSON) object.

[0037] One or more embodiments described 1n this Speci-
fication and/or recited in the claims may not be 1included 1n
this General Overview section.

[0038] 2. Architectural Overview

[0039] FIG. 1 illustrates a system 100 1n accordance with
one or more embodiments. As illustrated in FIG. 1, system
100 includes data sources 101, a signal analysis platform
110, and a data repository 130. In one or more embodiments,
the system 100 may include more or fewer components than
the components illustrated mm FIG. 1. The components
illustrated 1n FIG. 1 may be local to or remote from each
other. The components illustrated in FIG. 1 may be imple-
mented 1n soitware and/or hardware. Each component may
be distributed over multiple applications and/or machines.
Multiple components may be combined into one application
and/or machine. Operations described with respect to one
component may instead be performed by another compo-
nent.
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[0040] The signal analysis platform 110 includes a deter-
ministic machine learning (ML) engine 111, an abductive
model generation engine 118, and an explanation generator
122. The deterministic ML engine 111 generates a deter-
ministic ML model 114 by applying a deterministic ML
algorithm 112 to a time-series data set 103. The time-series
training data set includes signal data 104 from data sources
101. In one embodiment, the data sources 101 include
sensors monitoring components of a system. For example,
the data sources 101 may include sensors and applications
monitoring temperatures, environmental conditions, data
transmission characteristics, storage characteristics, and
application characteristics of a server facility. Alternatively,
the data sources 101 may include sensors and application
monitoring environmental characteristics, temperatures, tilt,
vibration, pressure, and other characteristics of an aircraft. A
typical aircrait may include hundreds or thousands of sen-
sors monitoring tens or hundreds of different systems. The
data sources 101 may include each of the hundreds or

thousands of sensors.

[0041] The time-series traiming data set 103 may also
include metadata 105 obtained from metadata sources 102.
The metadata sources 102 may include the data sources 101
as well as external sources. For example, a sensor may
generate sensor data. The metadata associated with the
sensor may include a type of sensor, a model of the sensor,
output characteristics of the output data (such as the rela-
tionship between a magnitude of the output signal from the
sensor and the characteristic being momtored), and a loca-
tion of the sensor (such as a location 1n a vehicle, or a
geographic location of a site where the sensor 1s located).

[0042] In one embodiment, the time-series training data
set 15 a set of time-series data values for a plurality of signals
in a pre-defined operating state. For example, the signals
may have varying values that are all non-anomalous values.
Using the non-anomalous values for the signal data 104, the
deterministic ML engine 111 may train the deterministic ML
model 114 to represent a non-anomalous operating state of
the system.

[0043] In one embodiment, the determimistic ML model
114 1includes an anomalous-signal-prediction model 115.
The anomalous-signal-prediction model 115 receives a set of
data signals as inputs and generates as outputs a correspond-
ing set of values indicating whether the mput signals cor-
respond to a signal in an anomalous state. For example, the
deterministic ML engine 111 may train the anomalous-
signal-prediction model 115 to predict the values of the set
of mput signals. The anomalous-signal-prediction model
115 may compare the actual values of the mnput signals with
the predictions to generate the corresponding output signals
representing a difference between the predictions for the set
of mput signals and the actual values of the set of mput
signals.

[0044] In one or more embodiments, the deterministic ML
model 114 includes a fault detection model 116. The fault
detection model 116 receives as an mput the signals output
by the anomalous-signal prediction model 115. The fault
detection model 116 generates values representing opera-
tional results 117 for the system. For example, in a target
system having a

suite of sensors monitoring six different
components, the fault detection model 116 may generate

values representing faults 1n one or more of the six different
components, or a failure of the entire target system.
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[0045] The deterministic ML model 114 receives a set of
time-series data 113 and generates operational results 117
based on the set of time-series data 113. For example, the
deterministic ML model 114 may monitor, in real-time,
signals from sensors monitoring a system. Alternatively, the
deterministic ML model 114 may be applied to previously-
stored time-series data 132. The time-series data 132 may be
stored 1n the data repository 130.

[0046] In one or more embodiments, a data repository 130
1s any type of storage unit and/or device (e.g., a file system,
database, collection of tables, or any other storage mecha-
nism) for storing data. Further, a data repository 130 may
include multiple different storage units and/or devices. The
multiple different storage units and/or devices may or may
not be of the same type or located at the same physical site.
Further, a data repository 130 may be implemented or may
execute on the same computing system as the signal analysis
platform 110. Alternatively, or additionally, a data repository
130 may be mmplemented or executed on a computing
system separate from the signal analysis platform 110. A
data repository 130 may be communicatively coupled to the
signal analysis platform 110 via a direct connection or via a
network.

[0047] Information describing the time-series data 132
may be implemented across any of components within the
system 100. However, this information 1s 1llustrated within
the data repository 130 for purposes of clarity and explana-
tion.

[0048] The signal analysis platform 110 includes an
abductive model generation engine 118. The abductive
model generation engine 118 receives an input value asso-
ciated with a particular operational result and generates data
identifying a root cause 121 for the particular operational
result 120. For example, the abductive model 119 may
identify a sub-set of sensors that have a high level of
influence on the particular operational result 120. In other
words, the abductive model 119 may 1dentify diflerent sets
ol sensors that, when generating particular output signals,
result in the deterministic ML model 114 generating the
particular operational result 120. For example, a variation in
one set of sensors may be associated with an operational
result of a failure of one component 1n a system. A variation
in a different set of sensors may be associated with an
operational result of an error state in another component 1n
the system. In one embodiment, the abductive model 119
may i1dentily a component of a system associated with the
sub-set of sensors. For example, if the abductive model 119
identifies three sensors monitoring a fuel 1njector as being
associated with an operational result “engine stall,” the
abductive model may provide as output data: (1) information
identifving the sensors, and (2) information identifying the
tuel 1njector. In one embodiment, the signal analysis plat-
form 110 outputs the information associated with the par-
ticular sub-set of sensors 121 via a user interface 140.

[0049] The signal analysis platform 110 includes an expla-
nation generator 122 for generating a human-understandable
explanation of an identified root cause of a particular opera-
tional result 120. The explanation generator 122 accesses
explanation templates 131 from the data repository 130 and
adds mformation regarding one or both of (1) particular sets
ol sensors associated with a particular operational result, and
(2) particular components 1n a system associated with the
particular sets of sensors. For example, the abductive model
119 may receive a particular operational result, “engine
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stall” as an iput. The abductive model 119 may 1dentify a
set of three sensors associated with the fuel injector as being
associated with the engine stall. The explanation generator
122 may access a template 131 to generate an explanation
“[Fuel ijector sensors X, Y, and 7] indicate [a malfunc-
tioning valve] 1s resulting in an engine stall 1n engine A.”
The signal analysis platform 110 may output the explanation
via the user interface 140.

[0050] In one or more embodiments, interface 140 refers
to hardware and/or software configured to facilitate com-
munications between a user and the signal analysis platform
110. Interface 140 renders user interface elements and
receives 1nput via user interface elements. Examples of
interfaces include a graphical user interface (GUI), a com-
mand line interface (CLI), a haptic interface, and a voice
command interface. Examples of user interface elements
include checkboxes, radio buttons, dropdown lists, list
boxes, buttons, toggles, text fields, date and time selectors,
command lines, sliders, pages, and forms.

[0051] In an embodiment, different components of inter-
face 140 are specified in different languages. The behavior
of user interface elements 1s specified 1 a dynamic pro-
gramming language, such as JavaScript. The content of user
interface elements 1s specified 1n a markup language, such as
hypertext markup language (HI'ML) or XML User Interface
Language (XUL). The layout of user interface elements 1s
specified 1n a style sheet language, such as Cascading Style
Sheets (CSS). Alternatively, interface 140 1s specified 1n one
or more other languages, such as Java, C, or C++.

[0052] In one or more embodiments, the signal analysis
plattorm 110 refers to hardware and/or software configured
to perform operations described herein for identifying a root
cause associated with a particular operational result of a
deterministic ML model. Examples of operations for 1den-
tifying a root cause associated with a particular operational
result are described below with reference to FIG. 2.
[0053] In an embodiment, the signal analysis platform 110
1s 1implemented on one or more digital devices. The term
“digital device” generally refers to any hardware device that
includes a processor. A digital device may refer to a physical
device executing an application or a virtual machine.
Examples of digital devices include a computer, a tablet, a
laptop, a desktop, a netbook, a server, a web server, a
network policy server, a proxy server, a generic machine, a
function-specific hardware device, a hardware router, a
hardware switch, a hardware firewall, a hardware firewall, a
hardware network address translator (NAT), a hardware load
balancer, a mainirame, a television, a content receiver, a
set-top box, a printer, a mobile handset, a smartphone, a
personal digital assistant (“PDA”), a wireless receiver and/
or transmitter, a base station, a communication management
device, a router, a switch, a controller, an access point,
and/or a client device.

[0054] Additional embodiments and/or examples relating
to computer networks are described below in Section 5,
titled “Computer Networks and Cloud Networks.”

[0055] 3. Root Cause Analysis for Particular Operational
Result of a Deterministic Machine Learning Model

[0056] FIG. 2 illustrates an example set of operations for
identifying a root cause of a particular operational result of
a deterministic machine learning model in accordance with
one or more embodiments.

[0057] A system obtains a set of time-series data and
associated metadata (Operation 202). The time-series data
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includes time-series signals from a plurality of data sources
over a period of time. For example, the time-series data may
be sensors values generated by a plurality of sensors over a
predetermined period of time. In another example, the
time-series data 1s stored data representing values that
sensors would generate. For example, for a set of one
hundred sensors, a system may obtain from a manufacturer
or other source time-series data representing values that the
sensors, 1I implemented 1n a system, would generate.

[0058] The system trains a deterministic machine learning
(ML) model based on a training data set of time-series data
(Operation 204). For example, the system may extract from
a body of time-series sensor data a representative segment of
time-series data in which all the sensor values span a range
of values between an upper operating threshold and a lower
operating threshold, without passing the thresholds. In other
words, the system may select time-series sensor values in
which the sensor values are all non-anomalous.

[0059] In one embodiment, the deterministic ML model 1s
a regression-type deterministic ML model. In one embodi-
ment, the deterministic ML model includes an anomalous-
signal-prediction model and a fault detection model. In one
embodiment, the anomalous-signal-prediction model 1s an
MSET model, and the fault detection model 1s a SPRT
model. In one or more embodiments, the deterministic ML
model does not include a stochastic-type machine learning
model. In one or more embodiments, the deterministic ML
model 1s represented as a structured query language (SQL)
aggregation function.

[0060] The trained anomalous-signal-prediction model
represents the model functioning within pre-defined param-
cters. For example, the model specifies a range of values, for
cach signal from a data source, that correspond to a non-
anomalous state of the corresponding data source. The
trained anomalous-signal-prediction model may generate a
prediction, for each actual signal value, of a next signal
value. The model may compare the received next actual
signal value to the predicted next signal value. The model
may output values, for each signal, representing a difference
between the predlcted next signal value and the actual next
signal value.

[0061] The tramned fault detection model obtains output
values from the anomalous-signal-prediction model and
identifies relationships (1) among the data sources, and (2)
between sets of the data sources and respective operational
results. The fault detection model 1s trained to output a
particular operational result based on the particular states of
the values obtained from the anomalous-signal-prediction
model. In one or more embodiments, the deterministic ML
model generates operational results 111d1cat111g a future fault
state ol one or more components 1n a target system even
before time-series signals cross threshold operating values.

[0062] The system applies the tramned deterministic ML
model to a new set of time-series data to generate one or
more operational results (Operation 206). The new set of
time-series data may be: (1) real-time data from sensors or
data sources monitoring a system, or (2) previously-stored
time-series data to be analyzed by the deterministic ML
model. In one embodiment, the operational results include
alarms associated with one or more components 1n a moni-
tored system. The operational results may include predic-
tions of system failures, errors, or other fault conditions in
the system that have yet to occur. The trained deterministic
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ML model may identify patterns in data source signals of
time-series data that correspond to potential faults at a later
time.

[0063] The system determines whether a request has been
received to 1dentily a root cause of a particular operational
result (Operation 209). For example, a user may generate a
request via a user interface of a signal analysis platform. The
particular operational result may be either (a) one of the
operational results predicted by the system based on time-
series data, or (b) a hypothetical operational result that has
not been predicted by the system. For example, in an
embodiment 1n which the time-series data includes sensor
output signals, an operator may observe that three sensors
are operating 1n an anomalous state, or a state having output
levels that exceed pre-defined thresholds. However, the
deterministic ML model may determine that the anomalous
states of the three sensors will not result 1n a fault 1n any
component of the system. The operator may initiate a
request to i1dentity a root cause of the non-fault state in
which three sensors are 1n an anomalous state. Alternatively,
the operator may initiate a request to 1identify a root cause of
a hypothetical fault state. For example, the operator may
desire to know which sensors in the system would generate
a Tault 1n a cooling component of the system 1f the sensors
were 1n a fault state. Accordingly, the operator may 1nitiate
a root-cause request for a “cooling system™ type fault.

[0064] Based on receiving the root cause request for a
particular operational result, the system determines whether
an abductive model exists for the system (Operation 210).
For example, the system may generate an abductive model
at a time that the deterministic model 1s generated. Alterna-
tively, the system may generate the abductive model only
when a request 1s received. While the deterministic model 1s
a deductive model that generates predictions of operational
results based on a set of time series data, the abductive
model generates 1dentification information for a sub-set of
data sources, from among the full set of data sources that
generate the time-series data. The sub-set of data sources
includes the data sources having the greatest influence on
determining whether the deterministic model generates the
particular operational result. For example, 1n an embodiment
in which the data sources include one hundred sensors
monitoring a system, the abductive model may identily a
first set of three sensors that, when in an anomalous state,
cause a fault state of one component in the system. The
abductive model may 1dentity another set of three sensors
that, when 1n an anomalous state, cause a fault state of a
different component in the system. The abductive model
may 1dentify yet another set of sensors that, regardless of
whether they are 1n an anomalous state or a non-anomalous
state, do not have an eflect on the fault state of any
components 1n the system.

[0065] If no abductive model yet exists, the system gen-
erates a new abductive model associates particular sets of
data sources with respective operational results (Operation
212). In one embodiment, the system generates the abduc-
tive model by taking advantage of the determimistic charac-
teristics of the deterministic ML model. In particular, the
system reverses an algorithm associated with the determin-
istic ML model to identity the particular data sources
associated with the respective operational results generated
by the deterministic ML model.

[0066] In one embodiment, the system generates the
abductive model by varying input values to the deterministic
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ML model according to a pre-defined pattern to identify the
data sources that have the greatest influence on the opera-
tional results generated by the deterministic ML model. In
one embodiment, the pre-defined pattern includes sequen-
tially varying the input values, individually and 1n combi-
nations. For example, the system may determine that among,
one hundred sensors monitoring a system, only twenty of the
sensors have output values that correspond to particular
operational results predicted operational result generated by
the deterministic ML model. For example, the system may
determine that varying output values of one or more of the
twenty data sources to output levels that meet or exceed a
threshold level results in the deterministic ML model chang-
ing from a non-fault-type operational result to a fault-type
operational result. Conversely, the system may determine
that varying output values of one or more of the other eighty
data sources to output levels that meet or exceed the thresh-
old levels does not result 1in the deterministic ML model
changing an output from a non-fault-type operational result
to a fault-type operational result. Instead, the deterministic
ML model may continue to generate a non-fault-type opera-
tional result.

[0067] Once the system has 1dentified the data sources that
have the greatest influence on the outputs of the determin-
istic ML model, the system varies, according to a pre-
defined pattern, output values of each of the data sources
identified as having the greatest influence on the outputs of
the deterministic ML model. Varying the output values of the
data sources may include varying the output values of each
data source one at a time, as well as grouping the data
sources 1nto each possible combination of multiple data
sources and varying the output values of each data source 1n
cach set of data sources to 1dentily the eflect of the variations
on the outputs of the deterministic ML model. Once the
system has identified which data sources and which sets of
data sources correspond to different operational results of
the deterministic ML model, the system generates the abduc-
tive model to map the data sources, and the sets of data
sources, to the respective operational results.

[0068] In another embodiment, the system generates the
abductive model by applying a propagation-of-uncertainty
model to the time-series data to i1dentify the correlations
between data sources, and sets of data sources, and diflerent
operational results generated by the deterministic ML
model.

[0069] In one embodiment, the deterministic ML model 1s
represented as an SQL aggregation function. The system
may receive the request for the root cause of a particular
operational result by recerving an SQL operator. The SQL
operator may receive as input data two sets of data. Each set
of the two sets may 1nclude, for a set of data sources, a delta
value between an actual output from the data sources and a
predicted value for the data source outputs, the predicted
value generated by the determimistic ML model. The SQL
operator may return output values representing the difler-
ences between the mput data sets, as a JSON object.

[0070] The system applies a particular operational result to
the abductive model to generate a root cause associated with
the particular operational result (Operation 214). The abduc-
tive model may i1dentily a set of data sources, that 1s a sub-set
of all of the data sources providing output signals that make
up the time-series data, that correspond to the particular
operational result.
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[0071] The system obtains metadata associated with the
sub-set of data sources (Operation 216). Metadata includes
any information associated with the data sources that 1s not
the output signal generated by the data sources. Examples of
metadata include: sensor manufacture information, sensor
type, sensor operating specifications, sensor output units of
measure, a location of a sensor 1n a monitored system, and
a component 1n the system that 1s monitored by the sensor.

[0072] The system accesses explanation templates from
data storage. The system applies the metadata to an expla-
nation template to generate a human-readable explanation
for a root cause associated with an operational result (Opera-
tion 218). For example, the system may maintain one or
more explanation templates for each monitored component
in the system. Based on identifying a particular operational
result, such as a fault in a component, the system may access
the corresponding explanation template from a data store.
The system may modily the template based on the particular
data sources 1dentified by the abductive model to provide a
human-readable explanation of the fault 1n the component.
For example, the system may generate a text output based on
an early detection of a fault 1n a cooling component of a
server facility by the deterministic ML model as follows: “A
data outage fault 1s predicted for [server A] due to a [failure]
of the [cooling component B]. [Sensors X, Y, and 7] indicate
[cooling component B] 1s operating [near operational param-
cters] [and 1s likely to fail]. Recommend replacement of
[cooling component B].” In such an example, information
contained 1n the brackets may be generated based on the
abductive model 1dentifying the root cause of the predicted
fault.

[0073] One or more operations 1llustrated in FIG. 2 may be
modified, rearranged, or omitted all together. Accordingly,
the particular sequence of operations illustrated 1 FIG. 2
should not be construed as limiting the scope of one or more
embodiments.

[0074] 4. Example Embodiments

[0075] A detailed example 1s described below for purposes
of clanity. Components and/or operations described below
should be understood as one specific example which may
not be applicable to certain embodiments. Accordingly,
components and/or operations described below should not
be construed as limiting the scope of any of the claims.

[0076] FIG. 3 illustrates an example of a system 300
according to one embodiment. The system 300 includes a
vehicle 310 that 1s being monitored by a deterministic ML
model. The deterministic ML model includes an MSET
model 320 and an SPRT model 330. The system includes an
abductive model 340 for identifying a root cause of an
operational result output by the deterministic ML model. An
explanation generator 350 generates a human-readable
explanation for the root cause.

[0077] In the system 300, the vehicle 310 includes com-
ponents 311-315. For example, the vehicle 310 may include
a fuel source 311, a fuel mjector 312, an engine A 313, an
engine B 314, and any number of additional components, up
to Component n 315. The system 300 may monitor operation
of the components 311-315 with sensors 316. Sensorl 316qa
monitors the fuel source 311. Sensor2 3160 and Sensor3
316¢ monitor the fuel mjector 312. Sensord 3164 and
Sensord 316e¢ momitor Engine A 313. Sensor6 316/ and
Sensor? 316g monitor Engine B 314. Additional sensors
monitor additional components 1n the vehicle, up to Sen-
sor200 316/ which monitors Component n 315.
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[0078] The sensors 316 generate time series data 317. The
real-time time-series data set 317 1s provided to the MSET
model 320 to generate time-series delta values 321. The
MSET model 320 may be trained using training time-series
data 361 stored in the data repository 360. The training
time-series data 361 includes time-series data for each of the
sensors 316 1n the vehicle 310. The time-series data
includes, for each sensor, a range ol non-anomalous values.
As a result, the MSET model 320 1s trained to recognize a
range of non-anomalous operating values for the sensors 316
in the vehicle 310. The MSET model 320 generates the

time-series delta values 321 based on comparing the non-
anomalous operating values predicted by the MSET model
320 with actual values detected in the real-time time-series
data set 317. The training time-series data 361 may be
generated by actually monitoring the sensors 316 in the
vehicle 310 over a duration of time 1n which the sensors 316
are all in non-anomalous states. Alternatively, the training
time-series data 361 may be historical data or template data
based on the sensor type and manufacture. For example, a
system may maintain a database of known non-anomalous
values for a library of sensors. The training time-series data
361 may be generated based on the known non-anomalous

values stored in the library.

[0079] The MSET model 320 may generate time-series
delta values 321 based on the real-time time-series data set
317 or based on a stored time-series data set 362. For
example, the stored time-series data set 362 may 1include one
or more sets of time-series data obtained over pre-defined
intervals of time. The stored time-series data set 362 may
include archives of the real-time time-series data set 317. An
operator may model past performance of the system by
applying the MSET model to the stored time-series data set

362.

[0080] The SPRT model 330 analyses the time-series delta
values 321 to generate operational results 331. As illustrated
in FIG. 3, the SPRT model 330 determines that for time
period T1, the operational result 1s “no fault” 1n the vehicle
310. For the time period T2, the operational result 1s “no
fault” 1n the vehicle 310. For time period Tn, the operational
result 1s “Fault predicted” 1n the vehicle 310. The abductive
model 340 obtains an operational result and generates a root
cause analysis 341 for the operational result. The operational
result may be among the operational results 331 generated
by the SPRT model 330. Alternatively, the operational result
may be a hypothetical operational result that was not gen-
crated by the SPRT model 330. For example, a user may
identily sensor6 316/ as being 1n an anomalous state at time
12 1n which no fault was predicted in the system. The user
may provide to the abductive model 340 a hypothetical
operational result for a “fault predicted 1n Engine B” to
identily particular sensors that would influence whether such
a Tault 1s predicted by the deterministic ML model.

[0081] The root cause analysis 341 may i1dentify the
particular sensors that influence whether a particular opera-
tional result 1s predicted. In the example mm FIG. 3, the
abductive model 340 identifies sensors 2, 7, 8, 14, 22, 36, 75,
and 161 as being in anomalous states, or operating outside
pre-defined thresholds. However, based on the abductive
model understanding the relationships among the sensors
and between the sensors and particular operational results,
the abductive model 1dentifies only sensors 7, 8, and 36 as
corresponding to the root cause for a particular predicted
fault. For example, 1f the particular predicted fault 1s a
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prediction that a component k will fail, the abductive model
may 1dentily sensors 7, 8, and 36 as being the sensors with
values that most highly correspond to whether component k
will or will not fail.

[0082] The explanation generator 350 obtains the data
from the root cause analysis 341 to generate a human-
understandable explanation 351. The explanation generator
350 accesses explanation templates from the data repository
363. The explanation generator 350 also accesses metadata
364 associated with the sensors 316. The metadata 364
provides additional information about the sensors 316, such
as sensor type and which component 1s monitored by which
sensors. The explanation generator 350 applies the metadata
for the sensors 1dentified 1n the root cause analysis 341 to the
explanation template 363 associated with a particular opera-
tional result to generate the human-understandable explana-
tion 351 of the root cause of the particular operational result.

[0083] Another detailed example 1s described below for
purposes of clarity. Components and/or operations described
below should be understood as one specific example which
may not be applicable to certain embodiments. Accordingly,
components and/or operations described below should not
be construed as limiting the scope of any of the claims.

[0084] FIG. 4 illustrates an example of a system 400
according to one embodiment. The system 400 includes data
sources 401, 402, 403, 404, a time series database 410, a
deterministic ML. model 430, and a solutions database 450.
A computing system monitors various processes to obtain
time-series data. The time-series data includes data from
system signals 401, including CPU usage, memory usage,
memory capacity, disk usage, and database utilization sig-
nals. Service signals 402 include various logs, such as
application logs and operating system (OS) logs. Host and
endpoint activity signals 403 1nclude host intrusion preven-
tion (HIPS) logs, anti-malware logs, and signals of agents
executing 1n the hosts or endpoints. Network activity signals
404 include data tracking host traflic. The various system
signals are stored in a time series database 410. The system
processes the signals by applying time-series data process-
ing 420. For example, the time-series data may be samples
at different sampling rates. In addition, the time-series data
signals may be out of synchronization. The system may
perform signal processing by: (1) transforming low-resolu-
tion signals into high-accuracy signals, (2) matching sam-
pling rates by performing imputation processes to impute
missing values in signals, and (3) synchronizing out-oi-
phase measurements.

[0085] The system applies the time-series data to a deter-
ministic ML model 430. The deterministic ML model 430
identifies anomalies 1n the time-series data and risks to the
system and components based on the anomalies 442. For
example, the deterministic ML model 430 may identity a set
of time-series signal sources that are 1n anomalous states.
The deterministic ML model 430 may further determine that
the 1dentified anomalous data sources correspond to arisk of
an outage at a host device 1in the system. Based on the
identified anomalies and risks 442, the system may generate
one or more recommendations 441. In addition to 1dentify-
ing anomalies and risks 442, the system may identily root
causes 461 of particular risks. An abductive model 460
receives the operational results output from the deterministic
ML model 430. The abductive model 1dentifies particular
data sources that correspond to the root cause 461 of the
particular operational results. For example, the deterministic
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ML model 430 may 1dentify ten data sources in anomalous
states. The deterministic model 430 may further 1dentity a
risk to a host device from the anomalous states of the ten
data sources. However, the deterministic model 430 may not
be capable of determining which of the ten data sources 1s
the root cause of the identified risk. The abductive model
460 may 1dentily two of the ten anomalies: e.g., an anomaly
in anti-malware logs and an anomaly 1in CPU usage, as
corresponding to the root cause of the risk to the host device.
The abductive model 460 may determine that the remaining
cight anomalous data sources do not have a direct or
significant impact on the 1dentified risk. In one embodiment,
the set of possible recommendations 441 1s narrowed down
based on the i1dentified root causes 461.

[0086] Based on the 1dentified root cause 461, the recom-
mendations 441, and the identified anomalies and risks, the
system may 1nitiate or propose one or more solutions 444.
For example, the system may recommend, based on the risk
to the host device, increasing a security setting of a firewall,
changing an anfti-malware service, or updating an anti-
malware application. The system may further generate one
or more nofifications to a system administrator or host
device user with a human-understandable explanation of the
root cause and the proposed solution. In one or more
embodiments, the system may initiate a solution without
intervening user mput. The system stores solutions, includ-

ing recommendations provided and solutions initiated, 1n a
solutions database 450.

[0087] 5. Computer Networks and Cloud Networks

[0088] In one or more embodiments, a computer network
provides connectivity among a set of nodes. The nodes may
be local to and/or remote from each other. The nodes are
connected by a set of links. Examples of links include a
coaxial cable, an unshielded twisted cable, a copper cable,
an optical fiber, and a virtual link.

[0089] A subset of nodes implements the computer net-
work. Examples of such nodes include a switch, a router, a
firewall, and a network address translator (NAT). Another
subset ol nodes uses the computer network. Such nodes (also
referred to as “hosts”) may execute a client process and/or
a server process. A client process makes a request for a
computing service (such as, execution of a particular appli-
cation, and/or storage of a particular amount of data). A
server process responds by executing the requested service
and/or returming corresponding data.

[0090] A computer network may be a physical network,
including physical nodes connected by physical links. A
physical node 1s any digital device. A physical node may be
a Tunction-specific hardware device, such as a hardware
switch, a hardware router, a hardware firewall, and a hard-
ware NAT. Additionally or alternatively, a physical node
may be a generic machine that 1s configured to execute
vartous virtual machines and/or applications performing
respective functions. A physical link 1s a physical medium
connecting two or more physical nodes. Examples of links
include a coaxial cable, an unshielded twisted cable, a
copper cable, and an optical fiber.

[0091] A computer network may be an overlay network.
An overlay network 1s a logical network implemented on top
of another network (such as, a physical network). Each node
in an overlay network corresponds to a respective node 1n
the underlying network. Hence, each node 1in an overlay
network 1s associated with both an overlay address (to
address to the overlay node) and an underlay address (to
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address the underlay node that implements the overlay
node). An overlay node may be a digital device and/or a
soltware process (such as, a virtual machine, an application
instance, or a thread) A link that connects overlay nodes 1s
implemented as a tunnel through the underlying network.
The overlay nodes at either end of the tunnel treat the
underlying multi-hop path between them as a single logical
link. Tunneling 1s performed through encapsulation and
decapsulation.

[0092] In an embodiment, a client may be local to and/or
remote from a computer network. The client may access the
computer network over other computer networks, such as a
private network or the Internet. The client may communicate
requests to the computer network using a communications
protocol, such as Hypertext Transier Protocol (HTTP). The
requests are communicated through an interface, such as a
client interface (such as a web browser), a program interface,
or an application programming interface (API).

[0093] In an embodiment, a computer network provides
connectivity between clients and network resources. Net-
work resources mnclude hardware and/or software configured
to execute server processes. Examples of network resources
include a processor, a data storage, a virtual machine, a
container, and/or a software application. Network resources
are shared amongst multiple clients. Clients request com-
puting services from a computer network independently of
cach other. Network resources are dynamically assigned to
the requests and/or clients on an on-demand basis. Network
resources assigned to each request and/or client may be
scaled up or down based on, for example, (a) the computing
services requested by a particular client, (b) the aggregated
computing services requested by a particular tenant, and/or
(c) the aggregated computing services requested of the
computer network. Such a computer network may be
referred to as a “cloud network.”

[0094] In an embodiment, a service provider provides a
cloud network to one or more end users. Various service
models may be implemented by the cloud network, includ-
ing but not limited to Software-as-a-Service (SaaS), Plat-
form-as-a-Service (PaaS), and Infrastructure-as-a-Service
(IaaS). In SaaS, a service provider provides end users the
capability to use the service provider’s applications, which
are executing on the network resources. In PaasS, the service
provider provides end users the capability to deploy custom
applications onto the network resources. The custom appli-
cations may be created using programming languages,
libraries, services, and tools supported by the service pro-
vider. In IaaS, the service provider provides end users the
capability to provision processing, storage, networks, and
other fundamental computing resources provided by the
network resources. Any arbitrary applications, including an
operating system, may be deployed on the network
resources.

[0095] In an embodiment, various deployment models
may be implemented by a computer network, including but
not limited to a private cloud, a public cloud, and a hybnd
cloud. In a private cloud, network resources are provisioned
for exclusive use by a particular group of one or more
entities (the term “entity” as used herein refers to a corpo-
ration, organization, person, or other entity). The network
resources may be local to and/or remote from the premises
of the particular group of entities. In a public cloud, cloud
resources are provisioned for multiple entities that are
independent from each other (also referred to as “tenants™ or
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“customers™). The computer network and the network
resources thereol are accessed by clients corresponding to
different tenants. Such a computer network may be referred
to as a “multi-tenant computer network.” Several tenants
may use a same particular network resource at diflerent
times and/or at the same time. The network resources may
be local to and/or remote from the premises of the tenants.
In a hybnd cloud, a computer network comprises a private
cloud and a public cloud. An interface between the private
cloud and the public cloud allows for data and application
portability. Data stored at the private cloud and data stored
at the public cloud may be exchanged through the interface.
Applications implemented at the private cloud and applica-
tions implemented at the public cloud may have dependen-
cies on each other. A call from an application at the private
cloud to an application at the public cloud (and vice versa)
may be executed through the interface.

[0096] In an embodiment, tenants ol a multi-tenant com-
puter network are imndependent of each other. For example,
a business or operation of one tenant may be separate from
a business or operation of another tenant. Diflerent tenants
may demand different network requirements for the com-
puter network. Examples of network requirements include
processing speed, amount of data storage, security require-
ments, performance requirements, throughput requirements,
latency requirements, resiliency requirements, Quality of
Service (QQoS) requirements, tenant 1solation, and/or consis-
tency. The same computer network may need to implement
different network requirements demanded by different ten-
ants.

[0097] In one or more embodiments, 1n a multi-tenant
computer network, tenant 1solation 1s implemented to ensure
that the applications and/or data of different tenants are not
shared with each other. Various tenant 1solation approaches
may be used.

[0098] In an embodiment, each tenant 1s associated with a
tenant ID. FEach network resource of the multi-tenant com-
puter network 1s tagged with a tenant ID. A tenant 1s
permitted access to a particular network resource only 11 the
tenant and the particular network resources are associated
with a same tenant ID.

[0099] In an embodiment, each tenant 1s associated with a
tenant ID. Each application, implemented by the computer
network, 1s tagged with a tenant ID. Additionally or alter-
natively, each data structure and/or dataset, stored by the
computer network, 1s tagged with a tenant ID. A tenant 1s
permitted access to a particular application, data structure,
and/or dataset only 11 the tenant and the particular applica-
tion, data structure, and/or dataset are associated with a same
tenant 1D.

[0100] As an example, each database implemented by a
multi-tenant computer network may be tagged with a tenant
ID. Only a tenant associated with the corresponding tenant
ID may access data of a particular database. As another
example, each entry 1n a database implemented by a multi-
tenant computer network may be tagged with a tenant ID.
Only a tenant associated with the corresponding tenant 1D
may access data of a particular entry. However, the database
may be shared by multiple tenants.

[0101] In an embodiment, a subscription list indicates
which tenants have authorization to access which applica-
tions. For each application, a list of tenant IDs of tenants
authorized to access the application 1s stored. A tenant 1s
permitted access to a particular application only 11 the tenant
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ID of the tenant 1s included 1n the subscription list corre-
sponding to the particular application.

[0102] In an embodiment, network resources (such as
digital devices, virtual machines, application instances, and
threads) corresponding to different tenants are isolated to
tenant-specific overlay networks maintained by the multi-
tenant computer network. As an example, packets from any
source device 1 a tenant overlay network may only be
transmitted to other devices within the same tenant overlay
network. Encapsulation tunnels are used to prohibit any
transmissions irom a source device on a tenant overlay
network to devices 1n other tenant overlay networks. Spe-
cifically, the packets, received from the source device, are
encapsulated within an outer packet. The outer packet 1is
transmitted from a first encapsulation tunnel endpoint (in
communication with the source device 1n the tenant overlay
network) to a second encapsulation tunnel endpoint (in
communication with the destination device in the tenant
overlay network). The second encapsulation tunnel endpoint
decapsulates the outer packet to obtain the original packet
transmitted by the source device. The original packet 1s
transmitted from the second encapsulation tunnel endpoint
to the destination device in the same particular overlay
network.

[0103] 6. Miscellaneous; Extensions

[0104] Embodiments are directed to a system with one or
more devices that include a hardware processor and that are
configured to perform any of the operations described herein
and/or recited 1n any of the claims below.

[0105] In an embodiment, a non-transitory computer read-
able storage medium comprises instructions which, when
executed by one or more hardware processors, causes per-
formance of any of the operations described herein and/or
recited 1n any of the claims.

[0106] Any combination of the features and functionalities
described herein may be used 1n accordance with one or
more embodiments. In the foregoing specification, embodi-
ments have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the invention, 1s the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form 1n which such claims issue, including any
subsequent correction.

[0107] 6. Hardware Overview

[0108] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or
may 1nclude digital electronic devices such as one or more
application-specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), or network processing
unmits (NPUs) that are persistently programmed to perform
the techmiques, or may include one or more general purpose
hardware processors programmed to perform the techniques
pursuant to program instructions in firmware, memory, other
storage, or a combination. Such special-purpose computing,
devices may also combine custom hard-wired logic, ASICs,
FPGAs, or NPUs with custom programming to accomplish
the techniques. The special-purpose computing devices may
be desktop computer systems, portable computer systems,
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handheld devices, networking devices or any other device
that incorporates hard-wired and/or program logic to imple-
ment the techniques.

[0109] For example, FIG. 5 1s a block diagram that 1llus-

trates a computer system 500 upon which an embodiment of
the mvention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 504 may be, for example, a general purpose
MI1Croprocessor.

[0110] Computer system 300 also includes a main
memory 3506, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 502 for storing
information and instructions to be executed by processor
504. Main memory 306 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
504. Such instructions, when stored in non-transitory storage
media accessible to processor 304, render computer system
500 mnto a special-purpose machine that 1s customized to
perform the operations specified 1n the instructions.

[0111] Computer system 500 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 502 for
storing 1nformation and 1nstructions.

[0112] Computer system 300 may be coupled via bus 502
to a display 512, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
514, including alphanumeric and other keys, 1s coupled to
bus 502 for communicating information and command
selections to processor 504. Another type of user input
device 1s cursor control 516, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 504 and for
controlling cursor movement on display 512. This 1nput
device typically has two degrees of freedom 1n two axes, a
first axis (e.g., X) and a second axis (e.g., v), that allows the
device to specily positions 1n a plane.

[0113] Computer system 500 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 300 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 in response to
processor 504 executing one or more sequences of one or
more instructions contained i main memory 506. Such
instructions may be read into main memory 306 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained 1 main
memory 506 causes processor 504 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software 1nstructions.

[0114] The term “storage media” as used herein refers to
any non-transitory media that store data and/or istructions
that cause a machine to operate 1n a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 510.
Volatile media includes dynamic memory, such as main
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memory 506. Common forms of storage media include, for
example, a tloppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and FPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge, content-

addressable memory (CAM), and ternary content-address-
able memory (TCAM).

[0115] Storage media 1s distinct from but may be used 1n
conjunction with transmission media. Transmission media
participates 1n transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 502. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.

[0116] Various forms of media may be mvolved 1n carry-
Ing one or more sequences of one or more 1nstructions to
processor 504 for execution. For example, the mnstructions
may 1nitially be carried on a magnetic disk or solid state
drive of a remote computer. The remote computer can load
the instructions into 1ts dynamic memory and send the
instructions over a telephone line using a modem. A modem
local to computer system 500 can receive the data on the
telephone line and use an infra-red transmitter to convert the
data to an inira-red signal. An infra-red detector can receive
the data carried in the infra-red signal and appropnate
circuitry can place the data on bus 502. Bus 502 carries the
data to main memory 506, from which processor 504
retrieves and executes the instructions. The instructions
received by main memory 506 may optionally be stored on
storage device 510 either before or after execution by
processor 504.

[0117] Computer system 500 also includes a communica-
tion interface 518 coupled to bus 502. Communication
interface 518 provides a two-way data communication cou-
pling to a network link 520 that 1s connected to a local
network 3522. For example, communication interface 518
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
clectrical, electromagnetic, or optical signals that carry
digital data streams representing various types of informa-
tion.

[0118] Network link 520 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 520 may provide a connection
through local network 3522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet” 3528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic, or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.
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[0119] Computer system 500 can send messages and
receive data, including program code, through the network
(s), network link 520 and communication interface 518. In
the Internet example, a server 330 might transmit a
requested code for an application program through Internet
528, ISP 526, local network 522 and communication inter-
face 518.

[0120] The recerved code may be executed by processor
504 as 1t 1s recerved, and/or stored 1n storage device 510, or
other non-volatile storage for later execution.

[0121] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the ivention, 1s the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form 1n which such claims issue, including any
subsequent correction.

What 1s claimed 1is:

1. A non-transitory computer-readable medium compris-
ing 1instructions which, when executed by one or more
hardware processors, causes performance ol operations
comprising;

training, using a traiming data set comprising data signals

assoclated with a set of data sources, a deterministic
machine learning model to 1dentity anomalous states of
the data signals;

using the deterministic machine learning model, analyz-
ing a target data set comprising a plurality of target data
signals associated with the set of data sources to
generate a plurality of operational results;

based on the plurality of operational results, receiving a
root-cause request to identify a root cause of a particu-
lar operational result associated with the set of data
Sources;

generating an abductive model to i1dentify correlations
between a plurality of sub-sets of data sources, among
the set of data sources, and respective operational
results, among the plurality of operational results gen-
crated by the deterministic machine learning model;
and

applying the abductive model to the particular operational
result to 1dentify a particular sub-set of the data sources,
from among the plurality of sub-sets of data sources,
that has a greatest influence on the deterministic
machine learning model generating the particular
operational result.

2. The computer-readable medium of claim 1, wherein
generating the abductive model comprises:

varying, according to a first pre-defined pattern, input
values to the deterministic machine learning model to
identify a first sub-set of data sources that has a greater
influence than a second sub-set of the data sources on
determining which operational result 1s generated by
the deterministic machine learning model; and

varying, according to a first pre-defined pattern, input
values of third sub-sets of the first sub-set of data
sources, without varying input values of the second
sub-set of the data resources, to 1dentify relative levels
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of 1nfluence of respective data sources on the deter-
ministic machine learning model generating respective
operational results.

3. The computer-readable medium of claim 1, wherein
generating the abductive model comprises:

applying a propagation-of-uncertainty model to the train-

ing data set to identity the correlations between the
plurality of sub-sets of data sources and the plurality of
operational results.

4. The computer-readable medium of claim 1, wherein the
instructions further cause:

identifying a particular set of metadata associated with the

particular sub-set of the data sources; and

generating an explanation for the root cause of the par-

ticular operational result based on the particular set of
metadata.

5. The computer-readable medium of claim 1, wherein the
particular operational result 1s a hypothetical operational
result that 1s not among the plurality of operational results.

6. The computer-readable medium of claim 1, wherein the
plurality operational results includes the particular opera-
tional result.

7. The computer-readable medium of claim 1, wherein the
deterministic machine learning model 1s represented as a
structured query language (SQL) aggregation function, and

wherein the abductive model 1s represented as a

JavaScript Object Notation (JSON) object.

8. The computer-readable medium of claim 1, wherein the
target data set 1s a set of time-series data obtained in
real-time from the set of data sources, and

wherein plurality of operational results comprises a plu-

rality of target operational results corresponding to a
respective plurality of segments of time of the set of
time-series data.
9. The computer-readable medium of claim 1, wherein the
deterministic machine learning model comprises a multi-
variate state estimation techmque (MSET) model and a
sequential probability ratio test (SPRT) fault detection algo-
rithm,
wherein the MSET model generates a set of output signals
identifying anomalous states of the data signals,

wherein the SPRT fault detection algorithm generates the
plurality of operational results based on the set of
output signals generated by the MSET model, and

wherein the abductive model i1dentifies the particular
sub-set of the data sources associated with the plurality
of target data signals input to the MSET model based
on the particular operational result generated by the
SPRT fault detection algorithm.

10. A method comprising:

training, using a traiming data set comprising data signals
associated with a set of data sources, a deterministic
machine learning model to 1dentily anomalous states of
the data signals;

using the deterministic machine learning model, analyz-

ing a target data set comprising a plurality of target data
signals associated with the set of data sources to
generate a plurality of operational results;

based on the plurality of operational results, receiving a

root-cause request to 1dentify a root cause of a particu-
lar operational result associated with the set of data
SOUrCes;

generating an abductive model to identily correlations

between a plurality of sub-sets of data sources, among
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the set of data sources, and respective operational
results, among the plurality of operational results gen-
crated by the deterministic machine learning model;
and
applying the abductive model to the particular operational
result to 1dentify a particular sub-set of the data sources,
from among the plurality of sub-sets of data sources,
that has a greatest influence on the deterministic
machine learning model generating the particular
operational result.
11. The method of claam 10, wherein generating the
abductive model comprises:
varying, according to a first pre-defined pattern, input
values to the deterministic machine learming model to
identify a first sub-set of data sources that has a greater
influence than a second sub-set of the data sources on
determining which operational result 1s generated by
the deterministic machine learning model; and

varying, according to a second pre-defined pattern, input
values of third sub-sets of the first sub-set of data
sources, without varying input values of the second
sub-set of the data resources, to identily relative levels
of influence of respective data sources on the deter-
ministic machine learning model generating respective
operational results.

12. The method of claim 10, wherein generating the
abductive model comprises:

applying a propagation-of-uncertainty model to the train-

ing data set to i1dentily the correlations between the
plurality of sub-sets of data sources and the plurality of
operational results.

13. The method of claim 10, further comprising:

identifying a particular set of metadata associated with the

particular sub-set of the data sources; and

generating an explanation for the root cause of the par-

ticular operational result based on the particular set of
metadata.

14. The method of claim 10, wherein the particular
operational result 1s a hypothetical operational result that 1s
not among the plurality of operational results.

15. The method of claim 10, wherein the plurality of
operational results includes the particular operational result.

16. The method of claim 10, wherein the deterministic
machine learning model 1s represented as a structured query
language (SQL) aggregation function, and

wherein the abductive model 1s represented as a

JavaScript Object Notation (JSON) object.

17. The method of claim 10, wherein the target data set 1s
a set of time-series data obtained 1n real-time from the set of
data sources, and

wherein plurality of operational results comprises a plu-

rality of target operational results corresponding to a
respective plurality of segments of time of the set of
time-series data.

18. The method of claim 10, wherein the deterministic
machine learning model comprises a multivanate state esti-
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mation technique (MSET) model and a sequential probabil-
ity ratio test (SPRT) fault detection algorithm,
wherein the MSET model generates a set of output signals
identifying anomalous states of the data signals,
wherein the SPRT fault detection algorithm generates the
plurality of operational results based on the set of
output signals generated by the MSET model, and
wherein the abductive model identifies the particular
sub-set of the data sources associated with the plurality
of target data signals 1nput to the MSET model based
on the particular operational result generated by the
SPRT fault detection algorithm.
19. A system comprising:
one or more processors; and
memory storing instructions that, when executed by the
one or more processors, cause the system to perform:
training, using a training data set comprising data
signals associated with a set of data sources, a
deterministic machine learning model to i1dentify
anomalous states of the data signals;
using the deterministic machine learning model, ana-
lyzing a target data set comprising a plurality of
target data signals associated with the set of data
sources to generate a plurality of operational results;
based on the plurality of operational results, receiving
a root-cause request to 1dentily a root cause of a
particular operational result associated with the set of
data sources;
generating an abductive model to identily correlations
between a plurality of sub-sets of data sources,
among the set of data sources, and respective opera-
tional results, among the plurality of operational
results generated by the deterministic machine learn-
ing model; and
applying the abductive model to the particular opera-
tional result to i1dentify a particular sub-set of the
data sources, from among the plurality of sub-sets of
data sources, that has a greatest influence on the
deterministic machine learning model generating the
particular operational result.
20. The system of claim 19, wherein generating the
abductive model comprises:
varying, according to a first pre-defined pattern, input
values to the deterministic machine learning model to
identify a first sub-set of data sources that has a greater
influence than a second sub-set of the data sources on
determining which operational result 1s generated by
the deterministic machine learning model; and
varying, according to a second pre-defined pattern, iput
values of third sub-sets of the first sub-set of data
sources, without varying input values of the second
sub-set of the data resources, to 1dentify relative levels
of 1nfluence of respective data sources on the deter-
ministic machine learning model generating respective
operational results.

¥ o # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

