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(57) ABSTRACT

Systems, methods, and other embodiments associated with
associated with dependency checking for machine learning
(ML) models are described. In one embodiment, a method
includes applying a repeating probe signal to an input signal
mput mto a machine learning model. An estimate signal
output from the machine learning model 1s monitored, and
the repeating probe signal i1s checked for in the estimate
signal. Based on the results of the checking for the repeating
probe signal, an evaluation of dependency in the machine
learning model 1s presented.
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DEPENDENCY CHECKING FOR MACHINE
LEARNING MODELS

BACKGROUND

[0001] Large numbers of sensors may be used to monitor
the operations of a wide variety of assets, such as data
centers, passenger aircrait, and oil refineries. The time series
sensor data or signals from the sensors can be used in
machine learning (ML) time series prognostic surveillance
to detect incipient failure of the monitored asset before the
fallure occurs. This makes 1t possible to take corrective
action before failure of the monitored asset. The usefulness
of such predictions depends heavily on the accuracy of the
ML model predictions. Inaccurate ML model predictions by
poor ML models detract from prognostic surveillance, either
through excessive false alarms or excessive missed alarms.
False alarms may be confusing or wastetul, while missed
alarms may be catastrophic and deadly.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The accompanying drawings, which are incorpo-
rated 1n and constitute a part of the specification, illustrate
various systems, methods, and other embodiments of the
disclosure. It will be appreciated that the illustrated element
boundaries (e.g., boxes, groups ol boxes, or other shapes) in
the figures represent one embodiment of the boundaries. In
some embodiments one element may be implemented as
multiple elements or that multiple elements may be 1mple-
mented as one element. In some embodiments, an element
shown as an 1nternal component of another element may be
implemented as an external component and vice versa.
Furthermore, elements may not be drawn to scale.

[0003] FIG. 1 illustrates one embodiment of a system
associated with dependency checking for machine learning

(ML) models.

[0004] FIG. 2 illustrates one embodiment of a dependency
checking method 200 associated with dependency checking
for ML models.

[0005] FIG. 3 illustrates a plot of results of a transfer
function analysis for a first example signal database of time
series data. The transfer function analysis 1s associated with
dependency checking for machine learning (ML) models.

[0006] FIG. 4 illustrates a plot of results of a transfer
function analysis for a second example signal database of
time series data. The transfer function analysis 1s associated
with dependency checking for machine learning (ML) mod-
els.

[0007] FIG. § illustrates an embodiment of a computing
system configured with the example systems and/or methods
disclosed.

DETAILED DESCRIPTION

[0008] Systems, methods and other embodiments are
described herein that provide dependency checking and
detection for machine learming (ML) models. For context,
ML time series prognostics may operate by training a ML
model to learn correlations among time series signals of a
monitored system, using the trained ML model to predict
“expected,” “normal,” or “correct” values for time series
signals, and 1ssuing alerts for deviations between observed
and predicted signal behavior. Dependency phenomena (as

Nov. 23, 2023

discussed 1n further detail elsewhere herein) can reduce the
accuracy of the predicted values 1n ways that cause missed
alerts and false alerts.

[0009] In one embodiment, a model dependency check
system 1dentifies the presence or absence of undesirable
dependency phenomena in a trammed ML model. In one
embodiment, a model dependency check system looks for
dependencies 1n a trained ML model by applying an oscil-
lation to an 1mput (or test) signal provided as mput to the ML
model, and checking for the oscillation 1n estimate signal(s)
output from the ML model.

[0010] In one embodiment, a model dependency check
system applies an oscillating perturbation to a test signal that
1s mput mnto a machine learning model. The model depen-
dency check system then monitors an estimate signal that 1s
output from the machine learning model. The model depen-
dency check system checks for the oscillating perturbation
in the estimate signal. From the results of the check, the
model dependency check system may then present an evalu-
ation of dependency in the ML model.

[0011] For example, an ML model may be subject to a
dependency phenomena called “following” that can cause
excessive missed-alarm probabilities (MAPs). In another
example, an ML model may be subject to a dependency
phenomena called “spillover” that causes excessive false-
alarm probabilities (FAPs). As used herein, the term depen-
dency refers collectively to following and spillover. The
following and spillover dependency phenomena are
described 1n further detail elsewhere herein. In one embodi-
ment, both the following and the spillover dependencies
may be detected by the model dependency check system.

Example Model Dependency Check System

[0012] FIG. 1 illustrates one embodiment of a system 100
associated with dependency checking for machine learning
(ML) models. System 100 includes a model dependency
check system 105 configured to check for dependencies 1n a
machine learning model 110. In one embodiment, machine
learning model 110 has been trained to generate a set of n

estimate signals 115, 120, 125 from a set of n test signals
130, 135, 140.

[0013] In one embodiment, the model dependency check
system 105 1s configured to apply an oscillating perturbation
d 145 (or other repeating probe signal) to a test signal (such
as test signal U, 130) that 1s input into ML model 110. In one
embodiment, model dependency check system 105 includes
a probe signal generator 150 that i1s configured to provide
oscillating perturbation d 145.

[0014] In one embodiment, the model dependency check
system 105 1s configured to monitor one or more of the n
estimate signals 115, 120, 125 that are output from the ML
model 110. In one embodiment, the model dependency
check system 105 1s configured to collect the values of the
n estimate signals 115, 120, 125 and store them for subse-
quent analysis.

[0015] In one embodiment, the model dependency check
system 105 1s configured to check for the oscillating per-
turbation d 145 in the one or more of the n estimate signals
115,120, 125. In one embodiment, model dependency check
system 103 includes an estimate checker 155 that 1s config-
ured to examine one or more ol the n estimate signals 115,
120, 125 for the presence of the oscillating perturbation d

145.
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[0016] In one embodiment, the model dependency check
system 103 1s configured to present an evaluation of depen-
dency in the machine learning model. In one embodiment,
the evaluation 1s based on results of checking for the
oscillating perturbation d 145 1n the one or more of the n
estimate signals 115, 120, 125. In one embodiment, model
dependency check system 105 includes an evaluation pre-
senter 160 that 1s configured to output information regarding
the nature and extent of dependency detected 1n the ML
model outputs.

[0017] Further details regarding model dependency check
system 105 are presented herein. In one embodiment, the
operation of model dependency check system 1035 will be
described with reference to an example method 200 shown
in FIG. 2. Further details on the operation of model depen-
dency check system 103 are shown 1n the context of experi-
mental validation of effectiveness and accuracy of operation

of model dependency check system 105 shown i FIG.
3-FIG. 4.

Example Method of ML Model Dependency
Checking

[0018] FIG. 2 illustrates one embodiment of a dependency
checking method 200 associated with dependency checking
for ML models. At a high level, 1n one embodiment, depen-
dency checking method 200 1s a method for determining
whether a repeating probe signal applied to a test signal
input mnto an ML model transiers through into an estimate
signal output from the ML model.

[0019] As an overview, dependency checking method 200
first applies an oscillating perturbation (one example of a
repeating probe signal) to a test signal input mto an ML
model. Dependency checking method 200 then monitors the
estimate signal(s) output from the ML model. Dependency
checking method 200 checks the estimate signal(s) for the
oscillating perturbation. Dependency checking method 200
then presents an evaluation of dependency 1n the ML model
based at least in part on the results of the checking for the
oscillating perturbation.

[0020] In one embodiment, dependency checking method
200 mmitiates at start block 205 1n response to a processor of
a computer configured to execute functions of model depen-
dency check system 105 determining one or more of: (1) an
ML model 110 evaluated by model dependency check
system 1035 has begun receiving test signals (e.g. 130); (11)
a user (or administrator) of model dependency check system
1035 has initiated method 200; or (111) that method 200 should

commence 1n response to occurrence of some other condi-
tion. Method 200 continues to process block 210.

[0021] At process block 210, the processor applies an
oscillating perturbation (or other repeating probe signal) to
a test signal input into a machine learning model. In one
embodiment, the test signal and the oscillating perturbation
are time series signals. As used herein, the term “time series
signal” refers to a data structure 1n which a series of data
points (such as observations or sampled values) are indexed
in time order. In one embodiment, the data points may be
indexed with a time stamp or an observation number. In one
embodiment, data points of a time series signal recur at a
uniform or consistent interval. In one embodiment, a time
series database of collection of signals 1s a data structure that
includes one or more time-series signals sharing a series of
time stamps or observation numbers 1n common.
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[0022] As used herein, the term “test” as applied to time
series signals refers to a portion of the observations in a time
series database other than the portion used to train the
machine learning model. In one example, a time series
database used 1n ML prognostics may include signals col-
lected or measured from sensors or other devices monitoring
a system. Also, in one embodiment, the signals may be
generated or synthesized by a signal generator to simulate
signals collected from sensors or other devices, for example
for experimentation or testing purposes. In either case, 1n
one embodiment, the time series database 1s divided into
multiple portions or segments of observations, including a
training portion used to train or configure an ML model to
accurately estimate values of the time series signals, and
including a test portion used to examine the trained ML
model for dependencies such as following or spillover. In
one embodiment, a test signal refers to the portion of the
observations of a signal that are used for testing. In one
embodiment, the training and test portions do not overlap. In
one embodiment, during method 200, the mput signal pro-
vided to the ML model 1s a test signal of observations from
the test portion of the time series database.

[0023] In one embodiment, the oscillating perturbation 1s
a time series signal of the same length or number of
observations as the test signal. In one embodiment, the
oscillating perturbation is a pre-generated and retrieved from
storage. In one embodiment, the oscillating perturbation 1s
generated 1n response to the mitiation of process block 210,
for example as shown and described 1n further detail below.

[0024] In one embodiment, the oscillating perturbation 1s
applied to the test signal by adding or summing the time
series values at observations of the test signal and oscillating
perturbation. In one embodiment, each pair of test signal
value and oscillating perturbation value at corresponding
indexes are added. The resulting value 1s the signal value for
the test signal with the oscillating perturbation applied. For
example, the first value of the test signal and the first value
of the oscillating perturbation signal are added to produce a
first value for the test signal with the oscillating perturbation
applied, followed by similarly combining each subsequent
pair of observation values 1n turn. Thus, each observation of
the test signal 1s adjusted by the value of the oscillating
perturbation at that observation. In this way, the oscillating
perturbation may be overlaid on or embedded 1n the test
signal.

[0025] In one embodiment, other methods of applying the
oscillating perturbation to the test signal may be used. For
example, the oscillating perturbation may be applied by
subtracting the oscillating perturbation from the test signal,
by multiplying the test signal by the oscillating perturbation,
or by performing other mathematical operations that other-
wise 1ncorporate the oscillating perturbation into the test
signal.

[0026] In one embodiment, once the oscillating perturba-
tion has been applied to the test signal, the test signal with
the oscillating perturbation applied 1s provided as an input to
the machine learning model for monitoring by the machine
learning model. Process block 210 then completes, and
method 200 continues at process block 215. At the comple-
tion of process block 210, an oscillating perturbation that 1s
used as a probe signal 1s applied to an input of the machine
learning model. In one embodiment, this oscillating pertur-
bation will appear 1n output estimates from the machine
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learning model where dependency (such as following or
spillover) exists 1n the machine learming model.

[0027] At process block 215, the processor monitors an
estimate signal output from the machine learning model. In
one embodiment, the machine learning model accepts input
ol a time series database of test signals, and generates output
of a time series database of estimate signals made up of
estimated observation values of the test signals. In one
embodiment, the time series databases have a number of
observations m. In one embodiment, the machine learning
model outputs a corresponding estimate signal for each test
signal mput into the ML model.

[0028] For example, in one embodiment, the machine
learning model accepts test signals 1 through n as inputs, and
generates estimate signals 1 through n as outputs. In one
embodiment, each observation value x (where X 1s between
1 and m, inclusive) in the estimate signal 1s predicted or
estimated based on corresponding observation values at X 1n
other test signals. Thus, for example, the estimated value at
a given observation x 1n estimate signal 1 may be based on
the values at the given observation x 1n test signals 2 through
n; the estimated value at observation x 1n estimate signal 2
may be based on the value at observation x 1n 1n test signals
1 and 3 through n; and so on.

[0029] In one embodiment, the input signals provided to
the machine learning model include the input signal with
oscillating perturbation applied. In a machine learning
model that undesirably exhibits either following or spillover
dependency, one or more of the estimate signals output from
the model may 1nclude the oscillating perturbation.

[0030] In one embodiment, to monitor estimate signals
output from the machine learning model the processor
collects the output estimate observation values for the esti-
mate signals, and stores them, for subsequent processing. In
one embodiment, an estimated or predicted observation
value 1s produced by the ML model for each observation
value 1 though m. In one embodiment, the sequence of
observation values predicted by the ML model are appended
as observation values to an estimate time series signal of m
observations. In one embodiment, estimate signals are pro-
duced for several test signals. In one embodiment, each of
the estimate signals produced are stored, for example as a
time series database or other data structures.

[0031] Process block 215 then completes, and method 200
continues at process block 220. At the completion of process
block 215, a test signal including an oscillating perturbation
as a probe signal has been iput mto a trained machine
learning model. The machine learning model has executed to
generate and output an estimate signal. Where the machine
learning model has been trained in a way that causes the
model to include following or spillover dependencies, the
estimate signal includes the oscillating perturbation to some
extent. Where the machine learning model includes depen-
dencies and produces multiple estimate signals, one or more
of the estimate signals include the oscillating perturbation to
some extent. The momitoring captures the estimate signal(s)
for subsequent analysis to check for and detect the presence
of the oscillating perturbation (or other repeating probe
signal).

[0032] At process block 220, the processor checks for the
oscillating perturbation (or other repeating probe signal) 1n
the estimate signal. Where the oscillating perturbation
appears to a non-zero extent in the estimate signal, the

trained ML model exhibits dependency. As discussed below,
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where the estimate signal in which the oscillating perturba-
tion appears 1s an estimate signal that predicts values for the
test signal with the oscillating perturbation applied, the
dependency in the ML model 1s a following-type depen-
dency. And, where the estimate signal in which the oscil-
lating perturbation appears 1s an estimate signal that predicts
values for a different test signal that does not have the
oscillating perturbation applied, the dependency 1n the ML
model 1s a spillover-type dependency.

[0033] In one embodiment, to check for the presence of
the oscillating perturbation in the estimate signal, the pro-
cessor performs a bivariate cross power spectral density
(CPSD) calculation between the test signal with the oscil-
lating perturbation applied and the estimate signal. The
CPSD serves as a transfer function between the test and
estimate signals. Where the oscillating perturbation appears
in the estimate signal as well as the test signal, a well-defined
peak will appear 1n the CPSD at the frequency of the
oscillating perturbation. The presence of this peak may be
detected by comparing two CPSDs: the CPSD between the
test signal and estimate with the oscillating perturbation
applied to the test signal and the CPSD between the test
signal and estimate without the oscillating perturbation
applied to the test signal.

[0034] In one embodiment, 1 applying the oscillating
perturbation to the test signal makes little or no difference in
CPSD amplitude at the frequency (or period) of the oscil-
lating perturbation, the oscillating perturbation 1s not present
in the estimate signal. In one embodiment, 11 applying the
oscillating to the test signal causes the CPSD amplitude at
the frequency (or period) of the oscillating perturbation to
differ, the oscillating perturbation 1s present in the estimate
signal.

[0035] In one embodiment, the boundary between pres-
ence or absence of the oscillating perturbation 1n the esti-
mate signal may be expressed by a threshold. In one
embodiment, the threshold, where satisfying the threshold
indicates that the oscillating perturbation 1s suiliciently
present 1n the estimate signal. In one embodiment, the
threshold may be a pre-determined value of a coupling
metric between the test signal and estimate signal. In one
embodiment, the threshold may be a pre-determined value
of a ratio of CPSD amplitudes (at the frequency of the
perturbation) of the signals after and before the perturbation
was introduced. In one embodiment, the threshold may be a
pre-determined value of a severity metric.

[0036] In one embodiment, the oscillating perturbation
may thus be checked for 1n output estimates of the machine
learning model to determine if dependency (such as follow-
ing or spillover) exists in the machine learning model.
Where the oscillating perturbation can be detected 1n one or
more of the output estimates, dependency exists in the
machine learning model. Further details on checking for the
presence of the oscillating perturbation in the estimate signal
are described elsewhere herein.

[0037] Process block 220 then completes, and method 200
continues at process block 225. At the completion of process
block 220, the processor has inferred a transier function
between the test signal and the estimate signal. The transier
function indicates (for example, by well-defined peaks 1n a
CPSD) where the test signal and estimate signal both have
content at similar periods or frequencies. Where superim-
posing the oscillating perturbation (or other repeating probe
signal) onto the test signal causes a substantial peak in the
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CPSD at the frequency of the oscillating perturbation, a
dependency phenomenon 1s occurring that causes the oscil-
lating perturbation to appear, to a greater or lesser extent, 1n
the estimate signal. Thus, the processor checks for the
appearance of the oscillating perturbation in the estimate as
an 1ndication of the presence of a dependency phenomenon
(following or spillover).

[0038] At process block 225, based on the results of the
checking for the oscillating perturbation the processor pres-
ents an evaluation of dependency of the machine learning
model. In one embodiment, the evaluation of dependency 1s
a data structure containing information about the nature and
extent of dependency 1n the ML model. In one embodiment,
the evaluation of dependency includes one or more of a
transfer function between the test signal and the estimate
signal, a coupling coeflicient that quantifies an extent to
which the test signal influences the estimate signal, a per-
turbation change ratio that shows the change 1n magnitude of
the transfer function due to application of the oscillating
perturbation, and a severity metric that quantifies an extent
to which a dependency detrimentally influences accuracy of
ML predictions. In one embodiment, the evaluation of
dependency may include transfer functions, coupling coet-
ficients, perturbation change ratios, and severity metrics for
multiple test signal—estimate signal pairs in the ML. For
example, the evaluation of dependency may include such
features for each pairing of input and output in the ML
model.

[0039] In one embodiment, the data generated during the
steps of method 200 1s stored mm or transterred to the
evaluation of dependency. In one embodiment, presenting
the evaluation of dependency includes making the evalua-
tion of dependency or one or more of 1ts contents accessible
through an application programming interface (API), such
as a representational state transfer (REST) API. In one
embodiment, presenting the evaluation of dependency
includes generating a graphical user interface (GUI) includ-
ing one or more of the contents of the evaluation of
dependency, and transmitting the GUI for display by a
computing device.

[0040] In one embodiment, the evaluation of dependency
may indicate that an ML model includes an unacceptably
severe dependency, and recommend retraining or redevel-
opment of the ML model. Process block 225 then completes,
and method 200 continues to END block 235, where method

300 completes.

[0041] As discussed in detail herein, the presence of
tollowing may cause ML models to miss triggering an alarm
for a legitimate degradation signal, and the presence of
spillover may cause ML models to trigger alerts on signals
where no degradation 1s occurring. In one embodiment, the
dependency checking systems and methods described herein
reveal these hidden following and spillover dependencies
within the ML model. And, in one embodiment, the discov-
ered following and spillover dependencies may be quantified
as to the severity of their eflect on the accuracy of the ML
model estimates. The ML model may therefore be improved
or replaced 1n accordance with the results of the dependency
checking. In one embodiment, the system may automatically
act to mitigate discovered dependencies, thereby strength-
ening the ML model.

[0042] In one embodiment, as discussed in further detail
herein, the checking for the oscillating perturbation (or other
repeating probe signal) also includes the processor perform-
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ing a cross power spectral density transform on the test
signal and the estimate signal. The processor then examines
the cross power spectral density at a frequency of the
oscillating perturbation to determine whether a peak 1is
present or absent at the frequency. In response to determin-
ing that the peak 1s present at the frequency in the cross
power spectral density, the processor indicates that the
machine learning model naccurately predicts the estimate
signal 1n the evaluation of dependency. The model may
inaccurately predict the estimate signal due to a dependency
indicated by the presence of the peak at the frequency of the
oscillating perturbation. In response to determining that the
peak 1s absent (not present) at the frequency in the cross
power spectral density, the processor indicates that the
machine learming model accurately predicts the estimate
signal 1n the evaluation of dependency. Assuming no other
dependencies from other input signals, the model should
accurately predict the estimate signal because the lack of a
peak at the frequency of the oscillating perturbation.

[0043] In one embodiment, as discussed in further detail
herein, the processor infers a coupling coeflicient between
the test signal and the estimate signal based on the oscillat-
ing perturbation (or other repeating probe signal). The
coupling coeflicient quantifies the extent to which the oscil-
lating perturbation transfers through from the test signal to
the estimate signal. In one embodiment, the coupling coel-
ficient 1s inferred by measurement. For example, the pro-
cessor may perform Fourier transforms on the test signal and
the estimate signal to find power spectral density (PSD)
functions that represent the test signal and the estimate
signal 1n the frequency domain. The amplitude at the fre-
quency ol the oscillating perturbation 1s measured in the
PSD for the test signal (referred to as input amplitude). The
amplitude at the frequency of the oscillating perturbation 1s
also measured 1n the PSD for the estimate signal (referred to
as output amplitude). In one embodiment, the coupling
coellicient 1s the ratio of the output amplitude to the mnput
amplitude. In one embodiment, once the coupling coetlicient
1s inferred, the processor may then present the coupling
coellicient 1n the evaluation of dependency.

[0044] In one embodiment, as discussed in further detail
herein, the oscillating perturbation (or other repeating probe
signal) 1s sinusoidal. For example, the processor may turther
generate the oscillating perturbation as a sinusoidal wave-
form.

[0045] In one embodiment, as discussed in further detail
herein, the processor automatically selects an amplitude of
the oscillating perturbation (or other repeating probe signal)
that 1s within a noise band of the test signal. From that
selected amplitude, the processor then generates the oscil-
lating perturbation to have the amplitude. In one embodi-
ment, the oscillating perturbation (or other repeating probe
signal) 1s generated by concatenating and linking together
time series for one or a few periods or cycles of the
perturbation into the oscillating signal for the length or
number of observations of the test signal. In one embodi-
ment, the noise band of the test signal 1s a standard deviation
or variance about the average value of the test signal. In one
embodiment, the processor calculates the standard deviation
of the average value of the test signal, and then selects an
amplitude for the oscillating perturbation that 1s less than the
standard deviation. The processor then generates the oscil-
lating perturbation to have the selected amplitude.
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[0046] In one embodiment, as discussed in further detail
herein, the estimate signal predicts values for a second test
signal that 1s input into the machine learning model. The
processor then determines that the estimate signal errone-
ously predicts values for the second test signal that at least
partially mimic the behavior of the test signal. The processor
then indicates that the machine learning model 1s subject to
spillover 1n the evaluation of the dependency of the machine
learning model. Spillover 1s a form of dependency that may
be exhibited by ML models. Spillover occurs where an ML
estimate for one signal mput to an ML model emulates
behavior of another signal mput to the ML model such that
the ML estimate erroneously predicts values for the one
signal that partially or wholly mimic the behavior of the
other signal.

[0047] In one embodiment, as discussed in further detail
herein, the estimate signal predicts values for the test signal
that has the oscillating perturbation (or other repeating probe
signal) applied to 1t. The processor then determines that the
estimate signal erroneously predicts values that at least
partially mimic the behavior of the test signal. The processor
then indicates that the machine learning model 1s subject to
following 1n the evaluation of the dependency of the
machine learning model. Following 1s a form of dependency
that may be exhibited by ML models. Following occurs
where an ML estimate for a signal emulates the behavior of
the signal such that the ML estimate erroneously predicts
values that partially or wholly mimic the behavior of the
signal.

[0048] In one embodiment, as discussed in further detail
herein, where the repeating probe signal appears in the
estimate signal, the processor determines a severity metric

between the test signal and the estimate signal. As discussed
herein, the severity metric quantifies an extent to which
dependency adversely aflects accuracy of the estimate sig-
nal. The processor evaluates the severity metric to determine
that a mitigation technique should be applied to the ML
model. In one embodiment, the evaluation includes com-
paring the value of the severity metric to a threshold that
indicates that a mitigation technique should be employed.
The processor then automatically implements that mitiga-
tion technique. In one embodiment, where a dependency 1s
discovered between the mput signal and the output signal,
the system may include 1n the evaluation of dependency one
or more of mitigation techniques to reduce the dependency,
such as: increasing a number of training vectors used to train
the ML model, performing filtering operations on the train-
ing signals and monitored signals to reduce noise, and
changing the number of monitored signals. In one embodi-
ment, the processor may automatically implement one or
more of the mitigation techniques in response to the discov-
ery of the dependency. In one embodiment, as discussed
clsewhere herein, the processor may generate a severity
metric quantifying the extent to which the dependency
adversely affects the output estimate by the ML model. In
one embodiment, the processor may automatically imple-
ment a mitigation technique 1n response to a severity metric
satistying a threshold that indicates that the mitigation
technique should be employed. In one embodiment, the
automatic implementation includes presenting a user-select-
able option 1n a GUI as to whether or not to proceed with
implementing the mitigation technique, accepting an 1nput
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selecting whether to proceed or not to proceed, and auto-
matically performing the mitigation technique, or not, in
response to the selection.

[0049] In one embodiment, while the model dependency
check systems and methods described herein are described
with respect to use of an oscillating perturbation as the
repeating probe signal, other repeating probe signals may
also be used. In one embodiment, the repeating probe signal
forms a consistent pattern of signal values that recurs at
uniform intervals. The uniform interval at which the pattern
of the probe signal repeats may be referred to herein as a
period of the repeating probe signal. The inverse of the
period of the repeating probe signal 1s the frequency of the
repeating probe signal (frequency=1/period). Thus, in one
embodiment, the repeating probe signal i1s the oscillating
perturbation: a repeating probe signal with signal values that
oscillate or vary in magnitude 1n a repeating manner about
a central value. In one embodiment, the repeating probe
signal 1s a sinusoid pattern or curve having values in the
form of a sine wave.

[0050] In one embodiment, the repeating probe signal 1s a
pulse pattern 1n which the signal values alternate between a
minimum and maximum value at a steady frequency. For
example, the pulse pattern may be a square wave, 1n which
the signal values spend the same duration at maximum and
minimum. Or, for example, the pulse pattern may be a
rectangular wave, 1n which the signal values form an asym-
metrical pulse pattern where the signal values spend differ-
ent durations at maximum and minimum. In one embodi-
ment, the repeating probe signal 1s a triangle waveform in
which the signal values alternately ramp linearly upwards
and downward between a minimum and maximum value
over a period of time. In one embodiment, the repeating
probe signal 1s a sawtooth waveform in which the signal
values ramp linearly between a minimum and maximum and
sharply return to the mimmimum (or the 1mnverse) over a period
of time. In one embodiment, the repeating probe signal 1s
another waveform that recurs over a period of time. In one
embodiment, the repeating probe signal 1s a compound
pattern made up of more than one constituent pattern of
signal values.

ML Modeling

[0051] ML modeling may be used as a technique for
discovering the onset of anomalies in complex engineering
systems 1n many fields that use sensors to monitor processes.
This anomaly discovery may also be referred to as prescrip-
tive or prognostic anomaly detection. For example, such
modeling finds application 1n fields as diverse as utilities, o1l
& gas production and refining, aviation, datacenter infor-
mation technology, military vehicles and installations, and
other sectors 1 which sensors (such as Internet of things
(I0T) sensors) are used to monitor activity. In particular,
multivariate ML modeling can be used for prescriptive or
prognostic anomaly detection. ML-based anomaly detection
may be performed, for example, 1n large-scale time series
databases, or for example, for real-time streaming prognos-
tics.

[0052] In general, the ML modeling techniques used for
anomaly detection predict or estimate what each signal
should be or 1s expected to be based on the other signals 1n
the database. The predicted signal may be referred to as the
“estimate”. For example, for Signal 1 1n a database of N
signals, the ML model will compute an estimate for Signal
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1 using signals 2 through N. In a “good” or accurate ML
model, the signals and their estimates overlay well.

[0053] Subtracting each signal from its corresponding
estimate gives the residuals or differences between the
values of the signal and estimate. Where there 1s an anomaly
in a signal, the measured signal departs from the estimated
signal. This causes the residuals to increase, triggering an
anomaly alarm. Thus, the residuals are used to detect such
anomalies where one or more of the residuals indicates such
a departure, for example by becoming consistently exces-
sively large. For example, the presence of an anomaly may
be indicated by a sequential probability ratio test (SPRT)
analysis of the residuals.

[0054] ML modeling may be subject to two diflerent types
of dependency phenomena called following and spillover.
These phenomena can cause excessive False-Alarm Prob-

abilities (FAPs) and Missed-Alarm Probabilities (MAPs) 1n
multivariate ML anomaly detection.

[0055] In one embodiment, the dependency checking sys-
tems and methods described herein implement a novel
approach for characterizing ML model robustness with
regard to following and spillover. In one embodiment, the
dependency checking systems and methods described herein
apply a bivariate Fourier transform technique called cross-
power-spectral-density (CPSD, as defined and illustrated
below) to 1dentily and characterize following and spillover
phenomena 1n ML models. In one embodiment, a dynamic
sinusoidal probe signal 1s applied to one or more variables
or signals 1 time series input to an ML model, and by
application of the CPSD technique discover and quantily
tollowing and spillover phenomena.

[0056] Advantageously, the dependency checking systems
and methods described herein discover and quantify follow-
ing and spillover phenomena with higher accuracy and
lower compute cost than 1s possible using existing tech-
niques. In one embodiment, the dependency checking sys-
tems and methods described herein enable an autonomous
robustness check for the presence and extent of following
and spillover dependencies 1n an ML model prior to ML
anomaly detection analysis of any database of telemetry
signals. In one embodiment, the autonomous dependency
checking enabled by the dependency checking systems and
methods described herein significantly reduce costly FAPs,
and significantly reduce potentially catastrophic MAPs.

[0057] All types of multivariate ML models may be sus-
ceptible to following or spillover phenomena, presenting a
challenge to the prognostic accuracy of ML modeling.
Following and spillover phenomena manifest in an ML
model depending in a complex nonlinear way on factors
such as number of signals being monitored, degree of
correlation between or among the monitored signals, and
noise ratio (a measure of random noise component of the
raw sensor outputs) on individual monitored signals.

[0058] In one embodiment, the dependency checking sys-
tems and methods described herein introduce a small sinu-
soidal perturbation to a measured or test signal mput 1nto a
ML model. The dependency checking systems and methods
described herein then perform a bivariate cross-power-
spectral-density (CPSD) computation between the input test
signal and an output estimated signal to derive a transfer
function between the mput and the output. From that transfer
function, the dependency checking systems and methods
described herein may infer a coupling coeflicient that mea-
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sures how ethiciently the perturbation transfers across the
ML model from the input test signal to the output estimated
signal.

[0059] As mentioned above, following occurs where an
ML estimate for a signal emulates the behavior of the signal
such that the ML estimate erroneously predicts values that
partially or wholly mimic the behavior of the signal. In other
words, where degradation appears in the signal, the ML
model estimate will “follow” the degradation 1n the signal,
incorrectly predicting values that mimic the degradation to
a greater or lesser extent. When the model estimates follow
the degradation signature, then the residuals remain small.
The residual may therefore not get large enough to trigger an
anomaly alarm, and no degradation 1s detected. This 1s an
undesirable and potentially dangerous quality. Models sus-
ceptible to following may thus have high Missed Alarm
Probabilities (IMAPs). The missed alarms due to following
may cause catastrophic failure of a momtored system. Fur-
ther, the missed alarms caused by following may be dan-
gerous 1n salety-critical industries, and costly in industries
for which undetected anomalies can lead to catastrophic
failures. Following may be caused in an ML model by
generating the ML model from a multivanate set of signals
that have very little correlation, a low signal to noise ratio,
and/or a small number of signals 1n the model.

[0060] As mentioned above, spillover occurs where an
ML estimate for one signal mput to an ML model emulates
behavior of another signal mput to the ML model such that
the ML estimate erronecously predicts values for the one
signal that partially or wholly mimic the behavior of the
other signal. In other words, where degradation appears 1n
one signal, the degradation can influence the behavior of or
“spill over” into estimates for other signals that do not
include the degradation. Real degradation appearing in one
signal can cause alarms to be triggered for other signals that
contain no anomalies. Models susceptible to spillover will
have high False Alarm Probabilities (FAPs). The {false
alarms caused by spillover can lead to unnecessary and
wastetul service actions to fix components or subsystems of
monitored systems that are not experiencing any degrada-
tion. The false alarms caused by spillover can also lead to
confusion for human-in-the-loop supervisory control of
monitored systems. For example, false alarms due to spill-
over can lead to confused 1dentification of source of degra-
dation anomalies in the monitored system.

[0061] Referring again to FIG. 1, model dependency
check system 105 implements a novel approach for detec-
tion and characterization of following and spillover. In one
embodiment, ML model 110 1s a nonlinear, nonparametric
ML model. In one embodiment, the ML, model 110 infers the
monitored system states from the inputs to produce the
estimate signals. In one embodiment, the estimate signals
115, 120, 125 are the result of a function S of test signals
130, 135, 140 (U) to which the oscillating perturbation d 145
1s applied.

[0062] In one embodiment, the test signals 130, 135, 140
(U,-U ) are example test signal inputs of telemetry signals
that represent workload or operational status of an example
monitored system. In one embodiment, test signals 130, 135,
140 1mputs may include performance metrics typical user
workload transactions 1n a computing system. Such perfor-
mance metrics may include loads, throughput, queue
lengths, transaction latencies, and other metrics describing
operational state of a computing system. In one embodi-
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ment, test signals 130, 135, 140 may include measurements
of physical phenomena occurring 1n or around a system or
device. Such physical phenomena may include such as
voltages, currents, temperature, vibration, and other phe-
nomena detectable by sensors. In one embodiment, the
estimate signal 115, 120, 125 (Y,-Y,) outputs are predic-
tions of behavior of the example monitored system. In one
embodiment, estimate signal 115, 120, 125 outputs may
include estimates of the compute system performance met-
rics or of the physical phenomena mentioned above.

[0063] To characterize and then counteract following and
spillover, 1n one embodiment, the model dependency check
system 105 may be configured to determine a transfer
function between 1nput signals and output estimate signals.
The transfer function 1s a mathematical representation of
how the ML model (such as ML model 110) changes the
inputs to obtain the outputs. In one embodiment, the transter
function assumes a direct (that 1s, not mverse) relationship
between 1nputs and outputs.

[0064] In one embodiment, estimate checker 155 infers
transfer functions between an input test signal U, 130 with
an oscillating perturbation d 145 applied and one or more of
estimate signals 115, 120, 125 (Y ,-Y ). In one embodiment,
the transfer function is inferred by performing a bivarnate
spectral decomposition of the mput test iput test signal U,
130 with the oscillating perturbation d 1435 applied and the
estimate signal. In one embodiment, the bivariate spectral
decomposition technique 1s a cross power spectral density
(CPSD) algorithm. In one embodiment, the system may
check for presence of the oscillating function 1n the output
estimate signals using the transfer function.

[0065] In one embodiment, the probe signal, disturbance,
or oscillating perturbation d 145 1s a mono-frequency sinu-
soidal signal. In one embodiment, oscillating perturbation d
145 1s a multi-frequency sinusoidal signal. In one embodi-
ment, a mono-irequency probe signal may be preferable
because, 1n subsequent analysis with the CPSD, a mono-
frequency probe signal produces a single prominent spike 1n
the frequency domain. In CPSD analysis with a multi-
frequency probe signal produces multiple frequency domain
spikes corresponding to the component frequencies of the
multi-frequency probe signal. The frequency domain spike
(or splkes) may be used as a robust and accurate probe for
assessing the coupling coeflicient for propagation from ML
model mnputs to ML model outputs.

[0066] In one embodiment, use of the CPSD between an
ML model mput (point A) and an ML model output (point
B) for inferring the transfer function between points A and
B has an advantageous property: the CPSD i1gnores or
mimmizes signal components that may affect point A and
point B separately (such as random incoherent noise), and 1s
sensitive to the correlated vibration that 1s seen at both points
A and B. The spikes 1n the frequency domain from the probe
signal at points A and B are amplified by the CPSD. Any
periodic content that does not have any overlap will result in
much smaller amplitudes in the CPSD.

[0067] The combination of the fact that CPSD amplifies
frequencies that appear at both points A and B with the fact
that mono-frequency mput translates mnto a single spike in
the frequency domain enables generation of the transier
function even through a complex ML model, and even where
the signals have a high level of superimposed noise. In one
embodiment, the process for finding the transfer function
includes taking the Fourier transform of the mput and the
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output, multiplying them 1in the frequency domain, and
comparing the amplitude of the peaks.

[0068] In one embodiment, the ML model 1s an MSET
model, the measurements or test signals are treated as the
inputs, and the ML model estimates as the output. In one
embodiment, to quantify following and spillover 1n the ML
model a perturbation (such as oscillating perturbation d 145)
1s placed on the testing portion of the data. In one embodi-
ment, the sinusoidal perturbation 1s artificially generated to
have known, pre-determined characteristics of amplitude,
period, and waveform. In one embodiment, the perturbation
1s small 1n amplitude relative to the amplitude of the test
signal input to which the perturbation 1s applied. In one
embodiment, the perturbation 1s small 1 period so as to be
able to repeat within and not go outside of the traiming range
of the mput signal. Thus, 1n one embodiment, the perturba-
tion (such as oscillating perturbation d 145) used as a probe
signal 1s small relative to the signal mput to which 1t 1s
applied. In one embodiment, the perturbation 1s periodic or
repeating in nature so as to be clearly identifiable 1n the
frequency domain. In one embodiment, the perturbation 1s
sinusoidal, such as a mono-frequency pure sine wave.
[0069] As previously mentioned, following occurs when
the estimates by an ML algorithm for an input signal are
influenced by anomalous behavior i the input signal and
begin to mimic the anomalous patterns. For example, where
a ramp of steadily increasing values 1s 1nserted into a signal
input to an ML model that 1s subject to following, estimates
for the signal “follow” the ramp. Similarly, where the small
sinusoidal perturbation 1s inserted nto a signal, when fol-
lowing occurs in the ML model, the ML model’s estimates
for the signal will mimic the small sinusoidal perturbation.
Theretore, when the transfer function 1s found between the
testing portion and the estimates, the severity of the follow-
ing can be quantified by calculating the magnitude of the
perturbation frequency 1n the CPSD. Likewise, spillover can
be assessed by comparing the testing potion of signal with
a perturbation to the estimates of other signals that do not
contain the extra sinusoidal content.

[0070] In one embodiment, CPSD between input and
output signals provides a transfer function identifies the
presence (or absence) of following or spillover in an ML
model. A coupling coethicient that quantifies the extent of the
following or spillover may be inferred using the CPSD
transfer function. In one embodiment, the coupling coetli-
cient may be inferred from comparison of the CPSD of the
input and output signals without the perturbation applied to
the input and with the perturbation applied to the mput. For
example, the ratio of CPSD amplitudes at the frequency of
the perturbation may be calculated and used as the Couphng
coellicient. Thus, in one embodiment, the coupling coetl-
cient between an mput and an output 1s inferred by gener-
ating a CPSD between the mput and the output before
adding an oscillating perturbation to the mput, generating a
CPSD between the mput and the output after adding the
oscillating perturbation to the input, and finding the ration
between the CPSD amplitudes at a frequency at which the
oscillating perturbation oscillates.

Example Transtfer Function Analysis of
Dependency-Free ML Models

[0071] FIG. 3 illustrates a plot 300 of results of a transfer
function analysis for a first example signal database of time
series data. The transfer function analysis 1s associated with
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dependency checking for machine learning (ML) models. In
order to provide a baseline, the first example signal database
includes signals such that a model trained on the signals will
not exhibit following or spillover. The first example signal
database includes twenty example time series signals,
including Signal 1 and Signal 2. Plot 300 shows CPSD
between Signals 1, before and after a sine wave perturbation
1s applied, and ML model (such as MSET) estimates for
Signal 1 and Signal 2 for the first example signal database.

[0072] In this example, the example time series signals of
the first example sngnal database are highly correlated (in
this case, having a minimum cross correlation value among,
signals 1n excess of 0.95). The example time series signals
have 40,000 data points or observations at a sampling rate of
one sample per second. The time series signals exhibit three
separate seasonality modes. The periodicities for the three
seasonality modes (expressed in number of observations) are

199, 383, and 547.

[0073] In this example, an example ML model 1s trained
on a training range or portion (such as the first 50%) of the
first example signal database. The trained example ML
model may then surveil or monitor a test range or portion
(such as the second 50%) of the first example signal database
to produce estimate signals A. As discussed above, a transier
function between an input to an ML model and an output

from the ML model may be found by taking the CPSD
between the input and output signals.

[0074] Plot 300 shows several CPSD curves plotted
against a period axis 305 and a logarithmic amplitude axis
310. First CPSD 315 1s a CPSD between a Signal 1 (without
perturbation) and an ML model estimate for Signal 1, Signal
A Second CPSD 320 1s a CPSD between Signal 1 and an
M_J model estimate for Signal 2, Signal A In one embodi-
ment, a perturbation 1s applied as a probe Slgnal to Signal 1,

forming Signal 1A. In one embodiment, the applied pertur-
bation 1s a pure sine wave with a period of 250. Third CPSD
325 15 a CPSD between Signal 1A, and an ML model
estimate for Signal 1, Signal f&l. Fourth CPSD 330 1s a
CPSD between Signal 1A and an ML model estimate for
Signal 2, Signal EAZ.

[0075] As an example, ML models trained on {irst
example database exhibit little to no following or spillover
due to strong signal correlation. In one embodiment, this
may be verified by transfer function analysis. For example,
the sine wave perturbation with a period of 250 1s apphed to
the testing range of Signal 1. An MSET ML model 1s then
trained on the first half (the training range) of the first
example signal database. MSET estimates are generated by
the tramed MSET model for the second half (the testing
range) of the first example signal database. After the MSET
estimates are generated, the ftransfer function analysis
between Signal 1 and the MSET estimates for Signal 1
(Slgnal Al) and the MSE'T estimates for Signal 2 (Signal Az)
1s performed to produce the results shown 1n plot 300. Plot
300 thus presents results of the transfer function analysis for
the first example signal database.

[0076] As a point of reference, the CPSDs for the signals
are computed betfore and after the perturbation. When the
first CPSD 315 between Signal 1 and 1ts estimate Signal A

1s calculated, 1t 1s apparent that the known periods of 199

383, and 547 for the three separate seasonality modes appear
with well-defined peaks 340 in first CPSD 315. This 1s a
direct consequence of the coupling effect. Both Signal 1A
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and the MSET estimate Signal f&l contain the same periodic
information and therefore the periods that both signals have

in common are amplified.
[0077] When comparing first CPSD 315 to third CPSD

325 (the CPSD between Signal 1A and the MSET estimate
Signal f&l) it 1s apparent that there 1s a new peak 345 at
period 250. The new peak 345 at period 250 1s a result of the
added perturbation 1n signal 1A. But the periodic content
added by the perturbation oscillating with a period of 250 1s
decades smaller than the more dominant periodic content.
The periodic content of the perturbation at period 250 1n
Signal 1A 1s not amplified in the third CPSD 315 due to the
lack of periodic content at period 250 1n the estimate Signal
A,. The amplitude of the sine wave at period 250 thus does
not receive any multiplicative effect from the third CPSD.
The system may therefore conclude that following 1s not
present in the MSET model trained on the first example
signal database. The system may so conclude because the
new peak 345 1s small relative to the peaks 340 of the
periodic components of the signals. Following 1s therefore
minimal or non-existent, and may be considered to be absent
from this MSET model.

[0078] Were following present, both Signal 1A the esti-
mate Signal A, would contain a sine wave with a period of
250, which would be amplified by the CPSD. Thus, were
following present, the new peak 345 1n third CPSD at period
250 would display a coupling effect and the amplitude of the
new peak 3435 would be a factor of 10x to 100x larger.
[0079] Similarly, by comparing the second CPSD 320 (the
CPSD between Signal 1 and the MSET estimate Signal f&z)
and fourth CPSD 330 (the CPSD between Signal 1A and the
MSET estimate and the MSET estimate Signal f&z)j the
system can also conclude that no spillover occurs. As above,
the periods for the three separate seasonality modes appear
with well-defined peaks 350 1 second CPSD 320. These
peaks are amplified by the periodic content of the season-
ality modes appearing in both Signal 1 and the MSET
estimate Signal A,. A new peak 3535 appears at period 250
in fourth CPSD 330 due to the added perturbation 1n Signal
1A. As 1n the analysis for following above, the periodic
content at period 250 1n Signal 1A 1s substantially canceled
out in the fourth CPSD 330 by the lack of periodic content
at period 250 1n MSE'T estimate Signal A,. The system may
therefore conclude that spillover i1s not present 1n the ML
(e.g. MSET) model tramned on the first example database
because the new peak 355 1s small relative to the peaks 350
of the periodic components of the signals. If spillover were
present, MSET estimate Signal A, would contain the peri-
odic content from the perturbation on Signal 1A and amplity
the new peak 355 at period 250.

[0080] The example ML model trained on the {first
example database 1s therefore found to be free of the
following and spillover dependencies.

Example Transfer Function Analysis of
Dependency-Prone ML Models

[0081] FIG. 4 illustrates a plot 400 of results of a transfer
function analysis for a second example signal database of
time series data. The transfer function analysis 1s associated
with dependency checking for machine learning (ML) mod-
¢ls. In order to provide a contrast, the second example signal
database includes signals such that a model trained on the
signals will exhibit following and spillover. The second
example signal database includes twenty example time
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series signals, including Signal 1 and Signal 8. Plot 400
shows CPSD between Signal 1, before and after a sine wave
perturbation 1s applied, and ML model (such as MSET)
estimates for Signal 1 and Signal 8 for the second example
signal database.

[0082] In this example, the example time series signals of
the second example signal database are weakly correlated
(in this case, having a maximum cross correlation value
among signals below of 0.05). As above, the example time
series signals have 40,000 data points or observations at a
sampling rate of one sample per second. The time series
signals each have different periodicity. For example, they
may have periods of prime numbers between the values of
1’73 and 27°7. Periods of 20 prime values in close proximity
climinates harmonics between signals and ensures the low
cross correlation 1 the second example signal database.
These features of the second example signal database are
chosen to increase the propensity for following and spillover
in order to provide behavior that contrasts with the first
example signal database discussed above with reference to
FIG. 3. ML models trained on the second example signal
database are therefore susceptible to a high degree of fol-
lowing due to the weak correlation between signals.

[0083] An example ML model 1s trained on a training
range or portion (such as the first 50%) of the second
example signal database. The trained example ML model
may surveil or monitor a test range or portion (such as the
second 50%) of the second example signal database to
produce estimate signals B. Transfer functions between
input and output points may be found by taking the CPSD
between the input and output signals.

[0084] Plot 400 shows several CPSD curves plotted
against a period axis 405 and a logarithmic amplitude axis
410. First CPSD 415 1s a CPSD between a Signal 1 (without
perturbation) and an ML model estimate for Signal 1, Signal
B,. Second CPSD 420 is a CPSD between Signal 1 and an
M_J model estimate for Signal 8, Signal B In one embodi-
ment, as above, the sine wave perturbatlon with a period of
250 1s applied as a probe signal to Signal 1, forming Signal
1B. Third CPSD 425 1s a CPSD between Slgnal 1B, and an

ML model estimate for Signal 1, Signal B;.

[0085] Fourth CPSD 430 is a CPSD between Signal 1B
and an ML model estimate for Signal 8, Signal B,

[0086] Transier function analysis of ML models trained
using the second example signal database 1llustrates how, in
one embodiment, the model dependency check systems and
methods described herein characterize following and spill-
over. As an example, ML models trained on the second
example database exhibit following and spillover due to lack
of signal correlation. In one embodiment, the following and
spillover may be characterized by transier function analysis.
For example, as above, a sine wave perturbation with a
period of 250 1s applied to the testing range of Signal 1. An
MSET ML model 1s then trained on the first half (the training
range) of the second example signal database. MSET esti-
mates are generated for the second half (the testing range) of
the second example signal database. After the MSET esti-
mates are generated, the transfer function analysis between
Signal 1 and the MSET estimates for Signal 1 (Slgnal B )
and the MSET estimates for Signal 8 (Signal B,) is per-
formed to produce the results shown 1n plot 400. Plot 400
thus presents results of the transier function analysis for the
second example signal database.
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[0087] When first CPSD 415 between Signal 1 and its
estimate Signal B, is calculated, it is apparent that there is a
well-defined peak 440 at period 173, the period of Signal 1.
Now comparing first CPSD 413 to tthd CPSD 425 between
Slgnal 1B and the MSET estimates for Signal 1 (Signal Bl)
it 1s apparent that there 1s a new peak 445 at period 250. In
contrast to the CPSDs of plot 300 for first example signal
database shown and described with reference to FIG. 3, the
new peak 445 at period 250 1s much higher 1n amplitude and
more commensurate with the amplitude of dominant fre-
quency of 173. Because both Signal 1 the MSET estimate
Signal B, contain a sine wave with a period of 250, there 1s
a substantial scaling effect in the CPSD at period 250 that
indicates a significant coupling eflect. The system may
therefore conclude that following 1s indeed present 1n the
MSET model trained on the second example signal database.
[0088] Similarly, comparing the second CPSD 420 (the
CPSD between Signal 1 and the MSET estimates for Signal
8, Signal Bg)wﬂh the fourth CPSD 430 (the CPSD between
Signal 1B and the MSET estimate Signal B <) reveals that
spillover 1s also occurring 1n the MSE'T model trained on the
second example signal database. In second CPSD 420, a first
peak 450 appears at period 173, the period of Signal 1, and
a second peak 455 appears at period 211, the period of
Signal 8. These peaks 450, 455 are not amplified 1n the
CPSD because the periodic content of Signal 1 at period 173
does not appear 1 Signal 8, and the periodic content of
Signal 8 at period 211 does not appear 1 Signal 1. A new
peak 460 appears at period 250 1n fourth CPSD 430 due to
the added perturbation 1n Signal 1B. Both Signal 1B the
estimate Signal B, contain a sine wave with a period of 250.
The amplification of the sine wave by the fourth CPSD 430
to form new peak 460 reveals the coupling between Signal
1B the estimate Signal B.. The small amplitude of the sine
wave perturbation 1s multiplied by the fourth CPSD to form
substantial new peak 460 that approaches the amplitude of
the periodic content of Signals 1 and 8. The system may
therefore conclude that spillover 1s present in the ML (e.g.
MSET) model tramned on the second example database
because the new peak 460 1s not small relative to the peaks
450, 455 of the periodic components of the signals. In
particular, the system may conclude that spillover is present
between Signal 1 and the estimate for Signal 8, Signal B,.
[0089] ML models trained on databases of signals having
high noise content or having few signals may also be
susceptible to a high degree of following and/or spillover. In
one embodiment, performing the transfer function analyses
discussed herein similarly reveals and characterizes follow-
ing and spillover 1n models trained on databases of signals
having high noise content or few signals. In one embodi-
ment, the transfer function analyses discussed herein suc-
cessiully reveal and characterize following and spillover 1n
ML models tramned on databases of signals that are pure
(Gaussian noise.

Coupling Coetlicient and Severity Metrics

[0090] In one embodiment, once the transfer function
analyses have detected dependency (following or spillover)
between an input and an output 1n an ML model, a coupling
coetlicient may be mferred from the input and output. The
coupling coetlicient quantifies extent of the coupling, or
influence that the input has on the output. In one embodi-
ment, the coupling coeflicient may be defined as the ratio of
the amplitude (peak height) for the output signal at the
frequency of the oscillating perturbation to the amplitude
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(peak height) of the oscillating perturbation. These peak
heights may be determined by performing Fourier trans-
forms on the output time series signal and the perturbation
time series signal to place them into the frequency domain,
and then i1dentitying the peak height at the frequency of the
oscillating perturbation. For example, where a sinusoid with
a frequency of 1 Hz and an amplitude of 1 1s applied to an
input of an ML model, and there 1s a small peak with an
amplitude of 0.1 in the frequency domain at 1 Hz for an
output of the ML model, then the coupling coetlicient
between the mput and output 1s 0.1. Where there 1s no peak
in the output at the frequency of the perturbation, there 1s
zero coupling between the mput and output. For coupling
between an input perturbation and an output signal that has
no gain (or amplification) and no loss (or attenuation), the
coupling coeflicient 1s 1.0. Coupling coellicients greater than
1.0 indicate gain or amplification of the following or spill-
over phenomena.

[0091] In one embodiment, the coupling coeflicient met-
rics are calibrated to the degree of following and spillover to
produce a severity metric. In one embodiment, the severity
metric 1s provided to quantitatively assess the extent to
which following or spillover 1n an ML model adversely
influences accuracy of an estimate. In one embodiment, a
ratio of amplitude of the dominant frequency (highest peak)
to amplitude at the frequency of the perturbation 1n a CPSD
between the mput signal and output estimate 1s a usetul
severity metric. As the value of this severity metric
approaches zero, the severity i1s considered to increase. The
severity metric approaches zero as a consequence of the
perturbation frequency becoming more dominant in the
output estimates, as occurs when following or spillover 1s
present in the ML model. The severity metric 1s agnostic as
to type of dependency and equally applicable to both types
of dependency. This severity metrics may also be referred to
as “robustness scores” for the ML model, indicating the
extent to which the ML model 1s free from following or
spillover between iput and output variables.

[0092] Table 1 below contains metrics for following or
spillover for the example databases described above with
reference to FIGS. 3 and 4. Table 1 quantitatively summa-
rizes the results of the transfer function analyses for the
example databases. The left-hand column (“Post-Perturba-
tion;Pre-Perturbation™) contains a ratio of CPSD amplitudes
(at the frequency of the perturbation) of the signals after and
before the perturbation was introduced. This may be referred
to as a perturbation change ratio. In other words, the
perturbation change ratio 1s the ratio between CPSD ampli-
tudes at the signal frequency (or period) with the new peak
and without the new peak (as discussed above). These Post-
to Pre-Perturbation amplitude ratios 1llustrate the increase in
magnitude that occurs as a consequence of the coupling
cllect. The right-hand column (“Dominant Freq.:Perturba-
tion Freq.”) contains the severity metric discussed above,
ratio of amplitude at the dominant frequency to amplitude at
the frequency of the perturbation 1n the CPSD between input
and output.

TABLE 1

Metric for Following and Spillover:
Ratio of CPSD Frequency Peaks

Database 1 (Perturbation only on Sig. #01)

Post-Perturbation:
Pre-Perturbation

Dominant Freq.:
Perturbation Freq.

634.2%
737.57

Sig. #01 4.37
Sig, #02 4.54
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TABLE 1-continued

Metric for Following and Spillover:
Ratio of CPSD Frequency Peaks

Database 2 (Perturbation only on Sig. #01)

Post-Perturbation:
Pre-Perturbation

Dominant Freq.:
Perturbation Freq.

Si1g. #01 78.60 122.03
Si1g. #08 11.24 37.60
[0093] Recall that ML models trammed from the first

example signal database (database 1) exhibit little to no
following. Accordingly, the Signal 1 ratio of post-perturba-
tion CPSD amplitude to pre-perturbation CPSD amplitude at
the frequency of the perturbation 1s small at 4.37/7. This small
increase 1n magnitude indicates little coupling ettect
between the Signal 1 input and the Signal A, output (esti-
mates for Signal 1). Also, the severity metric 1s far from zero
at 634.28. This large value indicates that the perturbation
frequency at the Signal 1A input 1s not dominant 1n the
Signal 1311 output (estimates for Signal 1A). This indicates
that following 1s not severe 1n the ML model for the first
example signal database, and that following has little effect
on ML model accuracy.

[0094] Recall that ML models tramned from the first
example signal database (database 1) exhibit little to no
spillover. Accordingly, the Signal 2 ratio of post-perturba-
tion CPSD amplitude to pre-perturbation CPSD amplitude at
the frequency of the perturbation 1s small at 4.54. This small
increase 1 magnitude indicates little coupling ellect
between the Signal 1 input and the Signal A, output (esti-
mates for Signal 2). Also, the severity metric 1s far from zero
at 737.57. This large value indicates that the perturbation
frequency at the Signal 1A imput 1s not dominant in the
Signal A, output. This indicates that spillover between
monitored signal 1 and estimates for signal 2 1s not severe
in the ML model for the first example signal database, and
that this spillover has little eflect on ML model accuracy.

[0095] Recall that ML models traimned from the second
example signal database (database 2) exhibit following.
Accordingly, the Signal 1 ratio of post-perturbation CPSD
amplitude to pre-perturbation CPSD amplitude at the fre-
quency of the perturbation 1s large at 78.60. This large
increase 1n magnitude indicates a strong coupling ellect
between the Signal 1 input and the Signal B , output (esti-
mates for Signal 1). Also, the severity metric 1s closer to zero
at 122.03. This moderate value indicates that the perturba-
tion frequency at the Signal 1B input 1s somewhat dominant
in the Signal B, output (estimates for Signal 1B). This
indicates that following 1s moderately severe in the ML
model for the second example signal database. The follow-
ing therefore moderately detracts from ML model accuracy.

[0096] Recall that ML models tramned from the second
example signal database (database 2) exhibit spillover.
Accordingly, the Signal 8 ratio of post-perturbation CPSD
amplitude to pre-perturbation CPSD amplitude at the fre-
quency of the perturbation 1s moderate at 11.24. This mod-
crate 1ncrease 1n magnitude mdicates a moderate coupling
cllect between the Signal 1 mput and the Signal ég output
(estimates for Signal 8). Also, the severity metric 1s
approaching zero at 37.60. This small value indicates that
the perturbation frequency at the Signal 1A mput 1s domi-
nant 1n the Signal By output. This indicates that spillover
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between monitored signal 1 and estimates for signal 8 output
1s severe the ML model for the first example signal database.
While the coupling eflect 1s only moderate, the spillover
eftects nevertheless dominate the informational content of
the Signal B, estimates for Signal 8.

Selected Advantages

[0097] In one embodiment, the dependency checking for
ML model systems and methods described herein provides
a superior methodology for proactively characterizing ML
models (such as those used for prognostic anomaly detec-
tion) 1n terms of susceptibility to the deleterious effects of
spillover and following on ML model accuracy. In one
embodiment, this method improves over insertion of artifi-
cial anomalies (such as a simple ramp-type degradation)
one-at-a-time 1nto all signals to assess spillover and follow-
ing. In one embodiment, sing the dependency checking for
ML model systems and methods described herein therefore
reduces computational cost of performing spillover and
following analyses compared with repeated anomaly 1nser-
tion analyses for all signals. Also, in one embodiment,
because the oscillating perturbation (or other repeating
probe signal) may be small 1n amplitude, the signals are not
caused to have amplitudes outside of the training ranges for
the model, thereby avoiding anomaly alerts that may com-
promise metrics for following or spillover. Further, in one
embodiment, the systems and methods described herein can
not only quantity the propensity of an ML model to exhibit
following or spillover, but also accurately quantily the
degree of the spillover or following.

[0098] In one embodiment, superimposing an oscillating
perturbation onto mput signals of an ML model allow the
system to infer the influence of the oscillating perturbation
on the output estimates of the model for all signals. In one
embodiment, the repeating or periodic content of an oscil-
lating perturbation makes even an oscillating perturbation of
small magnitude detectable as a spike 1n the frequency
domain. This 1s especially so when the spike 1s amplified by
CPSD. Non-repeating perturbations applied to signals, such
as step changes, need to be large 1n order to overcome the
noise on the signal. In other words, imposing a step change
or other blunt perturbation into one varniable and then
measuring response 1n other variables calls for a step change
large enough that steps in the output variables are distin-
guishable from noise in the output variables.

[0099] It 1s extremely challenging to assess how changes
to mput signals of an ML model propagate through the ML
model to aflect the output signals. In one embodiment, the
systems and methods herein resolve this challenge by infer-
ring the effects of modifications to the mput signals through
the ML model to the output model estimates for those input
signals. In one embodiment, the systems and methods herein
directly characterize the propensity for following and spill-
over ol an NLNP ML model with robustness scores.

Cloud or Enterprise Embodiments

[0100] In one embodiment, the present system (such as
model dependency check system 105) 1s a computing/data
processing system including a computing application or
collection of distributed computing applications for access
and use by other client computing devices associated with an
enterprise that communicate with the present system over a
network. The applications and computing system may be
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configured to operate with or be implemented as a cloud-
based network computing system, an infrastructure-as-a-
service (IAAS), platform-as-a-service (PAAS), or software-
as-a-service (SAAS) architecture, or other type of
networked computing solution. In one embodiment the
present system provides at least one or more of the functions
disclosed herein and a graphical user interface to access and
operate the functions. In one embodiment model depen-
dency check system 105 1s a centralized server-side appli-
cation that provides at least the functions disclosed herein
and that 1s accessed by many users via computing devices/
terminals communicating with the computers of model
dependency check system 105 (functioning as one or more
servers) over a computer network.

[0101] In one embodiment, the components of system 100
(including the components of model dependency check
system 103) intercommunicate by electronic messages or
signals. These electronic messages or signals may be con-
figured as calls to functions or procedures that access the
features or data of the component, such as for example
application programming interface (API) calls.

[0102] In one embodiment, these electronic messages or
signals are sent between hosts 1n a format compatible with
transmission control protocol/internet protocol (TCP/IP) or
other computer networking protocol. Components of system
100 may (1) generate or compose an electronic message or
signal to 1ssue a command or request to another component,
(11) transmit the message or signal to other components of
computing system 100, (111) parse the content of an elec-
tronic message or signal received to identily commands or
requests that the component can perform, and (1v) in
response to identifying the command or request, automati-
cally perform or execute the command or request. The
clectronic messages or signals may include queries against
databases. The queries may be composed and executed 1n
query languages compatible with the database and executed
in a runtime environment compatible with the query lan-
guage.

[0103] In one embodiment, remote computing systems
may access mformation or applications provided by model
dependency check system 105, for example through a web
interface server. In one embodiment, the remote computing
system may send requests to and receive responses irom
model dependency check system 105. In one example,
access to the information or applications may be efiected
through use of a web browser on a personal computer or
mobile device. In one example, communications exchanged
with model dependency check system 105 may take the
form of remote representational state transfer (REST)
requests using JavaScript object notation (JSON) as the data
interchange format for example, or simple object access
protocol (SOAP) requests to and from XML servers. The
REST or SOAP requests may include API calls to compo-
nents of model dependency check system 105.

Computing Device Embodiment

[0104] FIG. 5 illustrates an example computing system
500 that i1s configured and/or programmed as a special
purpose computing device with one or more of the example
systems and methods described herein, and/or equivalents.
In one embodiment, example computing system 3500
includes an example computer or computing device 505.
Example computing device 505 may include at least one
hardware processor 510, a memory 513, and mput/output
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ports 520 operably connected by a bus 525. In one example,
the computer 505 may include ML model dependency check
logic 530 configured to facilitate checking for dependency
phenomena (such as following and spillover) in ML models,
similar to the logic, systems, and methods shown and
described with reference to FIGS. 1-4.

[0105] In different examples, the logic 530 may be imple-
mented i hardware, a non-transitory computer-readable
medium 537 with stored instructions, firmware, and/or com-
binations thereof. While the logic 530 1s illustrated as a
hardware component attached to the bus 525, 1t 1s to be
appreciated that in other embodiments, the logic 530 could
be implemented 1n the processor 510, stored in memory 515,
or stored 1n disk 535.

[0106] In one embodiment, logic 530 or the computer 1s a
means (e.g., structure: hardware, non-transitory computer-
readable medium, firmware) for performing the actions
described. In some embodiments, the computing device may
be a server operating 1n a cloud computing system, a server
configured 1n a Software as a Service (SaaS) architecture, a
smart phone, laptop, tablet computing device, and so on.

[0107] The means may be implemented, for example, as
an ASIC programmed to check for dependency in ML
models as shown and described herein. The means may also
be implemented as stored computer executable nstructions
that are presented to computer 505 as data 540 that are
temporarily stored 1n memory 515 and then executed by
processor 310.

[0108] Logic 530 may also provide means (e.g., hardware,
non-transitory computer-readable medium that stores
executable instructions, firmware) for performing checking
for dependency mm ML models as shown and described
herein.

[0109] Generally describing an example configuration of
the computer 505, the processor 310 may be a variety of
various processors including dual microprocessor and other
multi-processor architectures. A memory 315 may include
volatile memory and/or non-volatile memory. Non-volatile
memory may include, for example, ROM, PROM, and so

on. Volatile memory may include, for example, RAM,
SRAM, DRAM, and so on.

[0110] Storage or disks 535 may be operably connected to
the computer 505 via, for example, an mput/output (I/O)
interface (e.g., card, device) 545 and an 1nput/output port
520 that are controlled by at least an input/output (I/0)
controller 547. The storage or disk 535 may be, for example,
a magnetic disk drive, a solid state drive, a floppy disk drive,
a tape drive, a Zip drive, a flash memory card, a memory
stick, and so on. Furthermore, the storage or disk 535 may
be a CD-ROM drive, a CD-R drive, a CD-RW drive, a DVD
ROM, and so on. The memory 515 can store a process 550
(such as method 200) and/or a data 540, for example. The
storage or disk 5335 and/or the memory 315 can store an
operating system that controls and allocates resources of the
computer 305.

[0111] The computer 505 may interact with, control, and/
or be controlled by input/output (I/0) devices via the mput/
output (I/0O) controller 547, the IO interfaces 345, and the
iput/output ports 520. Input/output devices may include,
for example, one or more displays 570, printers 572 (such as
inkjet, laser, or 3D printers), audio output devices 574 (such
as speakers or headphones), text mnput devices 380 (such as
keyboards), cursor control devices 582 for pointing and
selection iputs (such as mice, trackballs, touch screens,
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joysticks, pointing sticks, electronic styluses, electronic pen

tablets), audio mput devices 584 (such as microphones or
external audio players), video mput devices 586 (such as
video and still cameras, or external video players), image
scanners 388, video cards (not shown), disks 335, network
devices 560, and so on. The mput/output ports 520 may
include, for example, serial ports, parallel ports, and USB
ports.

[0112] The computer 505 can operate in a network envi-
ronment and thus may be connected to the network devices
535 wvia the IO iterfaces 545, and/or the 1/O ports 520.
Through the network devices 555, the computer 505 may
interact with a network(s) 560. Through network 3560, the
computer 505 may be logically connected to remote com-
puters 565. Networks with which the computer 505 may
interact include, but are not limited to, a LAN, a WAN, and
other networks.

[0113] In one embodiment, the computer may be con-
nected to sensors 590 through 1/0 ports 520 or networks 560
in order to receive information about physical states of
monitored machines, devices, systems, or facilities (collec-
tively referred to as “assets”). In one embodiment, sensors
590 are configured to monitor physical phenomena occur-
ring in or around an asset. The assets generally include any
type of machinery or facility with components that perform
measurable activities. In one embodiment, sensors 590 may
be operably connected or athixed to assets or otherwise
configured to detect and monitor physical phenomena occur-
ring 1 or around the asset. The sensors 590 may be
network-connected sensors for monitoring any type of
physical phenomena. The network connection of the sensors
590 and networks 560 may be wired or wireless. The sensors
590 may include (but are not limited to): a voltage sensor, a
current sensor, a temperature sensor, a pressure Sensor, a
scale or other weight sensor, a rotational speed sensor, an
angle sensor, a distance sensor, a displacement sensor, a
thermometer, a flow meter sensor, a vibration sensor, a
microphone, a photosensor, an electromagnetic radiation
sensor, a proximity sensor, an occupancy sensor, a motion
sensor, a gyroscope, an inclinometer, an accelerometer, a
shock sensor, a global positioning system (GPS) sensor, a
torque sensor, a flex sensor, a moisture monitor, a liquid
level sensor, an electronic nose, a nuclear radiation detector,
or any of a wide variety of other sensors or transducers for
generating  telemetry—electrical  signals that describe
detected or sensed physical behavior.

[0114] In one embodiment, computer 305 1s configured
with logic, such as software modules, to collect readings
from sensors 390 and store them as observations 1n a time
series data structure such as a time series database. In one
embodiment, the computer 505 polls sensors 5390 to retrieve
sensor telemetry readings. In one embodiment, the computer
590 passively receives sensor telemetry readings actively
transmitted by sensors 590. In one embodiment, the com-
puter 505 receives one or more databases ol previously
collected observations of sensors 590, for example from
storage 533 or from remote computers 565.

Definitions and Other Embodiments

[0115] No action or function described or claimed herein
1s performed by the human mind. An 1nterpretation that any
action or function can be performed in the human mind 1s
inconsistent with and contrary to this disclosure.
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[0116] In another embodiment, the described methods
and/or their equivalents may be implemented with computer
executable instructions. Thus, in one embodiment, a non-
transitory computer readable/storage medium 1s configured
with stored computer executable instructions of an algo-
rithm/executable application that when executed by a
machine(s) cause the machine(s) (and/or associated compo-
nents) to perform the method. Example machines include
but are not limited to a processor, a computer, a server
operating in a cloud computing system, a server configured
in a Software as a Service (SaaS) architecture, a smart
phone, and so on). In one embodiment, a computing device
1s implemented with one or more executable algorithms that
are configured to perform any of the disclosed methods.

[0117] In one or more embodiments, the disclosed meth-
ods or their equivalents are performed by either: computer
hardware configured to perform the method; or computer
instructions embodied in a module stored in a non-transitory
computer-readable medium where the instructions are con-
figured as an executable algorithm configured to perform the
method when executed by at least a processor of a comput-
ing device.

[0118] While for purposes of simplicity of explanation, the
illustrated methodologies in the figures are shown and
described as a series of blocks of an algorithm, 1t 1s to be
appreciated that the methodologies are not limited by the
order of the blocks. Some blocks can occur in different
orders and/or concurrently with other blocks from that
shown and described. Moreover, less than all the illustrated
blocks may be used to implement an example methodology.
Blocks may be combined or separated into multiple actions/
components. Furthermore, additional and/or alternative
methodologies can employ additional actions that are not

illustrated 1n blocks. The methods described herein are
limited to statutory subject matter under 35 U.S.C § 101.

[0119] The iollowing includes defimtions of selected
terms employed herein. The definitions include various
examples and/or forms of components that fall within the
scope of a term and that may be used for implementation.
The examples are not intended to be limiting. Both singular
and plural forms of terms may be within the definitions.

[0120] References to “one embodiment”, “an embodi-
ment”, “one example”, “an example”, and so on, indicate
that the embodiment(s) or example(s) so described may
include a particular feature, structure, characteristic, prop-
erty, element, or limitation, but that not every embodiment
or example necessarily includes that particular feature,
structure, characteristic, property, element or limitation.
Furthermore, repeated use of the phrase “in one embodi-
ment” does not necessarily refer to the same embodiment,
though 1t may.

[0121] A “data structure”, as used herein, 1s an organiza-
tion of data 1 a computing system that i1s stored i a
memory, a storage device, or other computerized system. A
data structure may be any one of, for example, a data field,
a data file, a data array, a data record, a database, a data table,
a graph, a tree, a linked list, and so on. A data structure may
be formed from and contain many other data structures (e.g.,
a database includes many data records). Other examples of
data structures are possible as well, 1n accordance with other

embodiments.

[0122] “‘Computer-readable medium” or “computer stor-
age medium”, as used herein, refers to a non-transitory
medium that stores instructions and/or data configured to
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perform one or more ol the disclosed functions when
executed. Data may function as instructions 1 some
embodiments. A computer-readable medium may take
forms, including, but not limited to, non-volatile media, and
volatile media. Non-volatile media may include, for
example, optical disks, magnetic disks, and so on. Volatile
media may include, for example, semiconductor memories,
dynamic memory, and so on. Common forms of a computer-
readable medium may include, but are not limited to, a
floppy disk, a flexible disk, a hard disk, a magnetic tape,
other magnetic medium, an application specific integrated
circuit (ASIC), a programmable logic device, a compact disk
(CD), other optical medium, a random access memory
(RAM), a read only memory (ROM), a memory chip or card,
a memory stick, solid state storage device (SSD), flash drive,
and other media from which a computer, a processor or other
clectronic device can function with. Each type of media, 1f
selected for 1mplementation 1 one embodiment, may
include stored instructions of an algorithm configured to
perform one or more of the disclosed and/or claimed func-
tions. Computer-readable media described herein are limited
to statutory subject matter under 35 U.S.C § 101.

[0123] “Logic”, as used herein, represents a component
that 1s implemented with computer or electrical hardware, a
non-transitory medium with stored instructions of an execut-
able application or program module, and/or combinations of
these to perform any of the functions or actions as disclosed
herein, and/or to cause a function or action from another
logic, method, and/or system to be performed as disclosed
herein. Equivalent logic may include firmware, a micropro-
cessor programmed with an algorithm, a discrete logic (e.g.,
ASIC), at least one circuit, an analog circuit, a digital circuit,
a programmed logic device, a memory device containing
instructions of an algorithm, and so on, any of which may be
configured to perform one or more of the disclosed func-
tions. In one embodiment, logic may include one or more
gates, combinations ol gates, or other circuit components
configured to perform one or more of the disclosed func-
tions. Where multiple logics are described, 1t may be pos-
sible to incorporate the multiple logics mto one logic.
Similarly, where a single logic 1s described, 1t may be
possible to distribute that single logic between multiple
logics. In one embodiment, one or more of these logics are
corresponding structure associated with performing the dis-
closed and/or claimed functions. Choice of which type of
logic to implement may be based on desired system condi-
tions or specifications. For example, iI greater speed 1s a
consideration, then hardware would be selected to 1mple-
ment functions. If a lower cost 1s a consideration, then stored
instructions/executable application would be selected to

implement the functions. Logic 1s limited to statutory sub-
ject matter under 35 U.S.C. § 101.

[0124] An “operable connection”, or a connection by
which entities are “operably connected”, 1s one in which
signals, physical communications, and/or logical communi-
cations may be sent and/or received. An operable connection
may include a physical interface, an electrical interface,
and/or a data interface. An operable connection may include
differing combinations of interfaces and/or connections sui-
ficient to allow operable control. For example, two entities
can be operably connected to communicate signals to each
other directly or through one or more intermediate entities
(e.g., processor, operating system, logic, non-transitory
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computer-readable medium). Logical and/or physical com-
munication channels can be used to create an operable
connection.

[0125] “User”, as used herein, includes but 1s not limited
to one or more persons, computers or other devices, or
combinations of these.

[0126] Whuile the disclosed embodiments have been 1llus-

trated and described in considerable detail, it 1s not the
intention to restrict or 1 any way limit the scope of the
appended claims to such detail. It 1s, of course, not possible
to describe every conceivable combination of components or
methodologies for purposes of describing the various
aspects of the subject matter. Therefore, the disclosure 1s not
limited to the specific details or the illustrative examples
shown and described. Thus, this disclosure 1s intended to
embrace alterations, modifications, and variations that fall
within the scope of the appended claims, which satisty the
statutory subject matter requirements of 35 U.S.C. § 101.

[0127] 'To the extent that the term “‘includes™ or “includ-
ing”” 1s employed 1n the detailed description or the claims, 1t
1s intended to be inclusive 1n a manner similar to the term
“comprising’” as that term 1s interpreted when employed as
a transitional word 1n a claim.

[0128] To the extent that the term “or” 1s used 1n the
detailed description or claims (e.g., A or B) 1t 1s intended to

mean “A or B or both”. When the applicants intend to
indicate “only A or B but not both” then the phrase “only A

or B but not both” will be used. Thus, use of the term “or”
herein 1s the inclusive, and not the exclusive use.

What 1s claimed 1s:
1. A computer-implemented method, comprising:

applying an oscillating perturbation to a test signal input
into a machine learning model;

monitoring an estimate signal output from the machine
learning model;

checking for the oscillating perturbation in the estimate
signal; and

based on the results of the checking for the oscillating
perturbation, presenting an evaluation of dependency in
the machine learning model.

2. The computer implemented method of claim 1, wherein
the checking for the oscillating perturbation further com-
prising:

performing a cross power spectral density transform on

the test signal and the estimate signal;

examining the cross power spectral density at a frequency
of the oscillating perturbation to determine whether a
peak 1s present or absent at the frequency; and

in response to

(1) determining that the peak 1s present, indicating that
the machine learning model mnaccurately predicts the
estimate signal in the evaluation of dependency; and

(1) determining that the peak 1s absent, indicating that
the machine learning model accurately predicts the
estimate signal 1n the evaluation of dependency.

3. The computer implemented method of claim 1, further
comprising;

inferring a coupling coeflicient between the test signal and
the estimate signal based on the oscillating perturba-
tion; and

presenting the coupling coeflicient in the evaluation of
dependency.
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4. The computer implemented method of claim 1, further
comprising generating the oscillating perturbation as a sinu-
soidal wavetorm.

5. The computer implemented method of claim 1, further
comprising;

automatically selecting an amplitude of the oscillating

perturbation that 1s within a noise band of the test
signal; and

generating the oscillating perturbation to have the ampli-

tude.

6. The computer implemented method of claim 1, wherein
the estimate signal predicts values for a second test signal
input into the machine learning model, the method further
comprising:

determining that the estimate signal erroneously predicts

values for the second test signal that at least partially
mimic the behavior of the test signal; and

indicating that the machine learning model i1s subject to

spillover 1n the evaluation of the dependency of the
machine learning model.

7. The computer implemented method of claim 1, wherein
the estimate signal predicts values for the test signal, the
method further comprising:

determining that the estimate signal erroneously predicts

values that at least partially mimic the behavior of the
test signal; and

indicating that the machine learning model 1s subject to

following 1n the evaluation of the dependency of the
machine learning model.

8. A non-transitory computer-readable medium that
includes stored thereon computer-executable instructions
that when executed by at least a processor of a computer
cause the computer to:

apply an oscillating perturbation to a test signal input into

a machine learning model;

monitor an estimate signal output from the machine

learning model;

check for the oscillating perturbation 1in the estimate
signal; and
based on the results of the checking for the oscillating

perturbation, present an evaluation of dependency in
the machine learning model.

9. The non-transitory computer-readable medium of claim
8, wherein the instructions to check for the oscillating
perturbation further cause the computer to:

perform a cross power spectral density transform on the
test signal and the estimate signal;

examine the cross power spectral density at a frequency of
the oscillating perturbation to determine whether a peak
1s present or absent at the frequency; and

in response to

(1) determining that the peak 1s present, indicate that the
machine learning model inaccurately predicts the
estimate signal 1n the evaluation of dependency; and

(1) determining that the peak 1s absent, indicate that the
machine learning model accurately predicts the esti-
mate signal 1n the evaluation of dependency.

10. The non-transitory computer-readable medium of
claim 8, wherein the 1nstructions further cause the computer
to:

infer a coupling coeflicient between the test signal and the
estimate signal based on the oscillating perturbation;
and

e
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present the coupling coeflicient in the evaluation of
dependency.

11. The non-transitory computer-readable medium of

claim 8, wherein the oscillating perturbation 1s sinusoidal.
12. The non-transitory computer-readable medium of
claim 8, wherein the 1nstructions further cause the computer
to:
automatically select an amplitude of the oscillating per-
turbation that 1s within a noise band of the test signal;
and
generate the oscillating perturbation to have the ampli-
tude.
13. The non-transitory computer-readable medium of
claiam 8, wherein the estimate signal predicts values for a
second test signal input into the machine learning model,
and the mnstructions further cause the computer to:
determine that the estimate signal erronecously predicts
values for the second test signal that at least partially
mimic the behavior of the test signal; and
indicate that the machine learning model i1s subject to
spillover 1in the evaluation of the dependency of the
machine learning model.
14. The non-transitory computer-readable medium of
claim 8, wherein the estimate signal predicts values for the
test signal, and the 1nstructions further cause the computer
to:
determine that the estimate signal erroncously predicts
values that at least partially mimic the behavior of the
test signal; and
indicate that the machine learning model i1s subject to
following 1n the evaluation of the dependency of the
machine learning model.
15. A computing system, comprising:
at least one processor connected to at least one memory;
at least one network interface for communicating to one
or more networks;
a non-transitory computer readable medium including
instructions stored thereon that when executed by at
least the processor cause the computing system to:
apply a repeating probe signal to an mput signal input
into a machine learning model;

monitor an estimate signal output from the machine
learning model;

check for the repeating probe signal 1n the estimate
signal; and

based on the results of the checking for the repeating
probe signal, present an evaluation of dependency 1n
the machine learning model.

16. The computing system of claim 15, wherein the
instructions to check for the repeating probe signal further
cause the computing system to:
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performing a cross power spectral density transform on
the mput signal and the estimate signal;

examining the cross power spectral density at a frequency
of the repeating probe signal to determine whether a
peak 1s present or absent at the frequency; and

in response 1o

(1) determining that the peak 1s present, indicating that
the machine learning model inaccurately predicts the
estimate signal 1n the evaluation of dependency; and

(1) determining that the peak 1s absent, indicating that
the machine learning model accurately predicts the
estimate signal in the evaluation of dependency.

17. The computing system of claim 15, wherein the

repeating probe signal appears in the estimate signal, the
instructions further cause the computing system to:

determine a severity metric between the input signal and
the estimate signal, wherein the severity metric quan-
tifies an extent to which dependency adversely aflects
accuracy of the estimate signal;

evaluate the severity metric to determine that a mitigation
technique should be applied to the ML model; and

automatically implementing the mitigation technique.

18. The computing system of claim 15, wherein the
instructions further cause the computing system to:

automatically select an amplitude for the repeating probe
signal that 1s within a noise band of the mput signal;
and

generate the repeating probe signal to have the amplitude.

19. The computing system of claim 15, wherein the
estimate signal predicts values for a second input signal
input into the machine learning model, and wherein the
instructions further cause the computing system to:

determining that the estimate signal erroneously predicts
values for the second input signal that at least partially
mimic the behavior of the input signal; and

indicating that the machine learning model 1s subject to
spillover 1 the evaluation of the dependency of the
machine learning model.

20. The computing system of claim 135, wheremn the
estimate signal predicts values for the iput signal, and
wherein the 1nstructions further cause the computing system
to:

determiming that the estimate signal erroneously predicts
values that at least partially mimic the behavior of the
input signal; and

indicating that the machine learning model i1s subject to

following 1n the evaluation of the dependency of the
machine learning model.
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