Real-Time Systems Publications of Kenneth Paul Baclawski
- 1. M. Kokar and K. Baclawski. Control theory based dynamic scan scheduler. Northeastern University. (2000)
- 2. M. Kokar and K. Baclawski. Control theory based distributed dynamic scan scheduler. Northeastern University. (2000)
- 3. Y. Xun, M. Kokar and K. Baclawski. Using a Control Architecture for Real-Time Dynamic Resource Allocation. Northeastern University, College of Engineering. (2002) [pdf]
- 4. Y. Xun, M.M. Kokar and K. Baclawski. Control based sensor management for a multiple radar monitoring scenario. Information Fusion: An International Journal on Multi-Sensor, Multi-Source Information Fusion 5(4):49-63. Elsevier Science Publishers. (2004) [pdf]
- 5. Y. Xun, M. Kokar and K. Baclawski. Using a Task-Specific QoS for Controlling Sensing Requests and Scheduling. In The 3rd IEEE Int. Sympos. Network Computing and Applications 269-276. (2004) [pdf]
- 6. K. Baclawski, E.S. Chan, D. Gawlick, A. Ghoneimy, K. Gross, Z.H. Liu and X. Zhang. Framework for Ontology-Driven Decision Making. Applied Ontology 12(3-4):245-273. IOS Press, The Netherlands. https://bit.ly/2LYPszt (2017) [pdf]
- 7. K. Baclawski, K. Gross, E.S. Chan, D. Gawlick, A. Ghoneimy and Z.H. Liu. Self-Adaptive Dynamic Decision Making Processes. In IEEE Conference on Cognitive and Computational Aspects of Situation Management . http://bit.ly/2fOG9G2 (2017) [pdf]
- 8. K. Gross, K. Baclawski, E.S. Chan, D. Gawlick, A. Ghoneimy and Z.H. Liu. A Supervisory Control Loop with Prognostics for Human-in-the-Loop Decision Support and Control Applications. In IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA 2017) . http://bit.ly/2fPlG45 (2017) [pdf]
- 9. M. Liu, P. Sonderegger, K. Baclawski, D. Gawlick, A. Chystiakova, G. Wang, Z.H. Liu, H. Balasubramanian and K.C. Gross. Optimizing a Prognostic-Surveillance System to Achieve a User-Selectable Functional Objective. United States Patent and Trademark Office. (February 2, 2023) [pdf]
- 10. J. Courtney, K. Baclawski, D. Gawlick, K.C. Gross, G. Wang, A. Chystiakova, P. Sonderegger and Z.H. Liu. Machine Learning Traceback-Enabled Decision Rationales as Models for Explainability. United States Patent and Trademark Office. (July 28, 2022) [pdf]
- 11. J. Rohrkemper, P. Sonderegger, A. Chystiakova, K. Baclawski, D. Gawlick, K.C. Gross, Z. Liu and G. Wang. Root Cause Analysis for Deterministic Machine Learning Model. United States Patent and Trademark Office. (March 2, 2023) [pdf]
- 12. J. Rohrkemper, K. Baclawski, D. Gawlick, K.C. Gross, G. Wang, A. Chystiakova, P. Sonderegger and Z. Liu. Recommendation Generation Using Machine Learning Data Validation. United States Patent and Trademark Office. (May 18, 2023) [pdf]
- 13. P. Sonderegger, K. Baclawski, G. Wang, A. Chystiakova, D. Gawlick, Z.H. Liu and K.C. Gross. Automatically adapting a prognostic-surveillance system to account for age-related changes in monitored assets. United States Patent and Trademark Office. (October 10, 2023) [pdf]
- 14. M. Gerdes, K. Baclawski, D. Gawlick, K.C. Gross, G. Wang, A. Chystiakova, P. Sonderegger and Z.H. Liu. Dependency Checking for Machine Learning Models. United States Patent and Trademark Office. (November 23, 2023) [pdf]
- 15. K. Ru, K. Baclawski, P. Sonderegger, D. Gawlick, A. Chystiakova, G. Wang, M. Gerdes and K.C. Gross. Bias Detection in Machine Learning Tools. United States Patent and Trademark Office. (August 1, 2024) [pdf]
Color Key
Article |
Conference |
Patent |
Report |
Software |
|
General List of Publications
Categorized List of Publications