
Introducing KGSQL
 A Knowledge Graph System

Query Language

Ken Baclawski

KG
SQL

7 July 2021 Introducing KGSQL

Outline

● Motivation for Knowledge Graphs (KGs)
● Definition of Knowledge Graphs
● Issues with the Resource Description Framework (RDF)
● The Knowledge Graph System Query Language (KGSQL)
● Implementation
● Conclusion

KG
SQL

7 July 2021 Introducing KGSQL

About Knowledge Graphs

● Lightweight semantic networks
● Based on the mathematical graph structure
● Scale to massively large data sets
● Critical to intelligent virtual assistants (Siri, Alexa, etc.)
● Popular research area
● Rapidly growing industry with many new applications

KG
SQL

7 July 2021 Introducing KGSQL

What is a Knowledge Graph?

● Many different definitions of a KG

● Most presume that a KG is implemented using RDF

● The Ontology Summit 2020 examined the problem of a definition and
published the community consensus in its Communiqué:

A KG is a representation of a set of statements in the form of a node-
and edge-labeled directed multigraph allowing multiple, heterogeneous
edges for the same nodes. A collection of definitional statements
specifying the meaning of the knowledge graph's labels is called its
schema.

KG
SQL

7 July 2021 Introducing KGSQL

KG Definition

● Definition: A node- and edge-labeled directed multigraph is an
8-tuple (V, E, s, t, ΣV, ΣE, ℓV, ℓE) such that

 1. V is a set of nodes and E is a set of edges.

 2. s: E V and t: E V are functions that specify the ⟶ ⟶
source and target nodes of the edges.

 3. ΣV is a set of node labels, and ΣE is a set of edge labels.

 4. ℓV: V Σ⟶ V and ℓE: E Σ⟶ E are functions that specify the
labels of the nodes and edges.

● Note that V and E need not be disjoint.

KG
SQL

7 July 2021 Introducing KGSQL

What is RDF?

● RDF describes resources

– Properties of resources
– Relationships between resources
– Resources are identified by a namespace and a name

● An RDF database consists of statements

– A statement has a subject, verb (predicate), and object
– Subjects are resources (global or local)
– Verbs are properties or relationships
– Objects can be resources or typed literals
– RDF statements are sometimes called “triples”

rdf:type is the resource
named “type” in the rdf
namespace

:Fred is the resource
named “Fred” in the
namespace with an
empty name

A local resource is also
called a “blank node”

KG
SQL

7 July 2021 Introducing KGSQL

RDF Issues

● A KG is most commonly implemented with RDF

● But there are mismatches between the needs of knowledge
representation and the facilities of RDF that are now discussed

– Higher order relations
– Literals

– Context and Provenance
– Other Annotations

KG
SQL

7 July 2021 Introducing KGSQL

Higher Order Relations

● Both RDF and KGs are based on binary relations

● Relations with higher arity (e.g., ternary relations, general records)
must be synthesized.

● The classical Suppliers and Parts database illustrates this issue

– Slide 9 has the relational database schema
– Representation in RDF is shown on Slide 10
– Slide 11 discusses the issue

KG
SQL

7 July 2021 Introducing KGSQL

Supplier and Parts Schema and Data

CREATE TABLE Supplier (
 id int primary key,
 name varchar(100),
 address varchar(250)
)

(14, “Qrst”, “Denver”)

CREATE TABLE Shipment (
 supplier int not null
 references Supplier(id),
 part int not null
 references Part(id),
 quantity int,
 primary key(supplier, part)
)

(14, 34, 500)

CREATE TABLE Part (
 id int primary key,
 name varchar(250),
 color int,
 weight real
)

(34, “Tube”, 5, 1.6)

KG
SQL

7 July 2021 Introducing KGSQL

Supplier and Parts in RDF

● Each Supplier record is represented by a resource

– The primary key is mapped to a unique namespace and name (e.g., :supplier14)

– A statement specifies each non-primary attribute value (e.g.,
<:supplier14,:name,“Qrst”>)

● Part records are represented in a similar manner

● The Shipment table is a many-to-many binary relationship between Supplier and Part

– Each shipment record for a supplier and a part can be represented with an RDF
statement (e.g., <:supplier14,:shipment,:part34>)

– The quantity attribute cannot be added to the RDF statement, so a different
strategy is necessary

KG
SQL

7 July 2021 Introducing KGSQL

Supplier and Parts in RDF

● To represent a shipment with a quantity in RDF there must be a resource to
serve as the subject of the RDF statement that specifies the quantity.

● This is done by reifying the statement <:supplier14,:shipment,:part34>
which can be done like this

<:shipment8581,rdf:type,rdf:Statement>

<:shipment8581,rdf:subject,:supplier14>

<:shipment8581,rdf:predicate,:shipment>

<:shipment8581,rdf:object,:part34>
● One can then specify the quantity like this

<:shipment8581,:quantity,500>

KG
SQL

7 July 2021 Introducing KGSQL

Problems with Reification

● Inefficient: One statement becomes four

● Awkward: Queries become much more complicated

● Inconsistent: No connection between the unreified statement and the reified
statement

– If only some shipment statements are reified, queries must take this into account,
which increases complexity even more

– Constraints on shipment statements are not automatically imposed on the
reifications

● Inflexible: Adding an attribute can be very complicated and error-prone

– Compare with adding a new column to a relational database table

KG
SQL

7 July 2021 Introducing KGSQL

RDF Literals

● Because RDF literals are not resources, one cannot specify properties, such
as measurement units

● To give properties to a literal, it could be reified like this

<:eg887,:type,rdfs:CompoundLiteral>
<:eg887,rdf:value,”887”>
<:eg887,:unit,uom:gram>

● While this solves the problem, it has many of the same problems as with
higher order relations

KG
SQL

7 July 2021 Introducing KGSQL

Context and Provenance

● Generally, individual RDF statements are not meaningful in themselves

– Semantics and pragmatics are associated with collections of statements
– The provenance of the the whole collection is important
– The context within which the collection occurs is also important

● In order to represent this in RDF, it is necessary to be able to specify that an RDF statement
belongs to a collection

– Such a collection is called a named graph
– The name of a graph is a resource that can be used like any other resource

● Because of this, in practice, RDF statements in an RDF data store will have four parts: subject,
verb (predicate), object, and name of the graph

● The name of the graph is the reification of the named graph

KG
SQL

7 July 2021 Introducing KGSQL

Uncertainty, Risk, Trust, ...

● There are many more annotations that are necessary for
application domains

● In general, these are represented using reifications.

● Reifications are used in RDF and OWL for still other constructs,
such as linked lists

● Given how often one needs reifications, it would help to be more
systematic.

KG
SQL

7 July 2021 Introducing KGSQL

Knowledge Graph System Query Language

● Not just another query language for RDF

● Designed for the needs of general knowledge representation

● Supports general knowledge graphs in which V and E can intersect
or even in which E is a subset of V, i.e., every edge has been reified

– Actually, there are some exceptions that will be explained later
● Nearly all KGSQL statements are resources and so have identifiers

which can be global or local

● Unlike RDF, a statement and its reification are the same

KG
SQL

7 July 2021 Introducing KGSQL

KGSQL Bracket Pairs

● The notation [B C] in KGSQL means that B has type C.

● This is more general in KGSQL than in RDF

– For a resource B and class C, it is the same as the RDF
statement <B rdf:type C>

– A statement is regarded as an instance of the property, so if S is a
statement with property Prop and identifier ID, then [ID Prop]

– If L is a literal that has datatype D, then [L D]. This is the

equivalent to the RDF syntax L^^D.

KG
SQL

7 July 2021 Introducing KGSQL

KGSQL Commands

● KGSQL supports SELECT, CONSTRUCT, INSERT and DELETE

● All of the commands use the same pattern syntax

● Here is an example:

DELETE ?e WHERE {
 [?a :Person] [?e :name] “Fred” .
 ?e :probability ?p . filter(?p <= 0.9)
}

● This deletes all statements that specify that a person is named Fred with
probability at most 90%.

KG
SQL

7 July 2021 Introducing KGSQL

KGSQL Syntax

SELECT list of variables
WHERE { pattern }

Retrieve the resource identifiers or literals
specified by some of the variables in the pattern

CONSTRUCT pattern
WHERE { pattern }

Same as SELECT but use variables to construct
statements that are to be returned

INSERT pattern
WHERE { pattern }

Same as CONSTRUCT but add the constructed
statements to the KG database

DELETE list of variables
WHERE { pattern }

Delete the statements in the KG database that
are identified by the variables in the list

All of the above are preceded by definitions of the prefixes to be used in the patterns.

KG
SQL

7 July 2021 Introducing KGSQL

Resolving RDF Issues

● The various issues discussed above are resolved on the following slides

– Higher order relations
– Literals
– Context and Provenance
– Other Annotations

● In addition, some other features are discussed

– Linked Lists
– Multiplicities

KG
SQL

7 July 2021 Introducing KGSQL

Higher Order Relations

● Although KGSQL is based on binary relations, KGSQL statements can have attributes and relations

● For the Suppliers and Parts Database, the shipment example that required 5 statements in RDF
now requires only 2:

:supplier14 [?e :shipment] :part34 .
?e :quantity [“500” xsd:decimal] .

● More importantly, queries involving shipments are much simpler.
● One can visualize the statements above like this

:part34
:shipment

:supplier14

500

:quantity

KG
SQL

7 July 2021 Introducing KGSQL

Higher Order Relations

● The Suppliers and Parts Database is unrealistic since there is only one
quantity for each supplier-part pair, and the customer is not specified.

● These can easily be added, for example, like this

:part34
:shipment

:supplier14

:customer82

:soldTo

:quantity

:date

500

2021-05-18

:soldTo
:customer82

:quantity

:date
350

2021-05-25

KG
SQL

7 July 2021 Introducing KGSQL

Higher Order Relations

● The representation on the previous slide is also not very realistic

– In practice, one shipment may include several parts but would
always be to one customer on one date, organized as an invoice

– So it would be better to make the customer the main attribute of a
shipment like this:

:customer83
:invoice

:supplier14

:part34

:item:quantity :date500

2021-05-18 :part37

:item
:quantity

280

KG
SQL

7 July 2021 Introducing KGSQL

Advantages

● Efficient: No extra statements

● Convenient: Queries are much simpler

● Consistent: The unreified statement and the reified statement are the same

– There is never partial reification so there is no added complexity

– Constraints on shipment statements are imposed on the reifications
● Flexible: Adding more attributes is very easy

● Relational and hierarchical models can be specified in a graph framework

KG
SQL

7 July 2021 Introducing KGSQL

Literals

● Literals can be given properties by using the datatype statement for
the literal like this

:part34 :weighs [“887” ?d xsd:decimal] .
?d :unit uom:gram .

:weighs
:part34

“887”

xsd:decimal

uom:gram
:unit

KG
SQL

7 July 2021 Introducing KGSQL

Context, Provenance and other Annotations

● There are two techniques for KGSQL named graphs

1 All the objects of a fixed subject and verb
● The objects are the statements of the named graph
● The fixed subject is the name of the named graph
● This technique was rejected for RDF because it requires that the statements

in the named graph be reified

2 All the statements whose identifiers have the same namespace
● The namespace is the name of the named graph

● Each technique has advantages and disadvantages

KG
SQL

7 July 2021 Introducing KGSQL

Linked Lists

● An RDF linked list is specified using the built-in properties rdf:first
and rdf:rest, and the built-in resource rdf:nil.

● For example, the linked list (:Ken :Greer :Qing) is specified like this

where a, b and c are local resources.

<a rdf:first :Ken>
<a rdf:rest b>
<b rdf:first :Greer>
<b rdf:rest c>
<c rdf:first :Qing>
<c rdf:rest rdf:nil>

KG
SQL

7 July 2021 Introducing KGSQL

KGSQL Linked Lists

● The KGSQL linked list for (:Ken :Greer :Qing) is
specified like this

c [a prop] :Ken .
a [b prop] :Greer .
b [c prop] :Qing .

● Where a, b and c are local resources as in the
RDF linked list, and prop is a property

● The KGSQL notation for this linked list is
[(:Ken :Greer :Qing) prop]

Ken
Greer

Qing

KG
SQL

7 July 2021 Introducing KGSQL

KGSQL Linked Lists

● A KGSQL linked list has some advantages over RDF

– Requires only one builtin resource
● kgq:nil is necessary for empty lists

– Requires half as many statements
– Can use any property for linking, provided the property has compatible

domain and range.
● Retrieval of an element of a linked list can be done as shown on the next

slide

– Note that KGSQL linked lists are circular, so if one requests an element
beyond the “end” of the list, the list repeats.

KG
SQL

7 July 2021 Introducing KGSQL

Multiplicities

● Multiplicities can be specified on a pattern

– The general form is {min..max}
– {m} is the same as {m..m}
– {min..*} means that there is no max

● There are two ways to iterate

– From object to object
 :a :prop ?x {6}
 The result is :b

– From statement to statement
 :c :prop {6} ?x
 The result is :d

:a
:c

:b

:d

KG
SQL

Statement to statement iteration is
almost the same as array selection
in programming languages:
 x = c.prop[6]

7 July 2021 Introducing KGSQL

Negative Multiplicities

● Multiplicities can be negative

– {*..max} means that there is no min
● There are two ways to iterate

– From object to object
 :x :prop ?b {-6}
 The result is :a

– From statement to statement
 :x :prop {-6} ?d
 The result is :c

:a
:c

:b

:d

KG
SQL

7 July 2021 Introducing KGSQL

KGSQL Patterns

● The WHERE clause of a query is specified using patterns.

– KGSQL patterns are similar to SPARQL, but slots can have bracket pairs and multiplicities.
● Here is an example:

[?a :Person] [?e :name] “Fred” .
?e :probability ?p . filter(?p > 0.9)

● This pattern matches persons named Fred with probability greater than 90%.

– In the bracket pair [?e :name] the variable ?e is the identifier of a statement with
verb :name

– The bracket pair [?a :Person] restricts the variable ?a to be the identifier of a resource
whose type is :Person

KG
SQL

7 July 2021 Introducing KGSQL

Type Unions

● One can specify more than one class or property in a KGSQL bracket pair

● Here is an example:

[?a :Person | :Company] [?e :name] “Fred” .
?e :probability ?p . filter(?p > 0.9)

● This pattern matches persons or companies named Fred with probability
greater than 90%.

– The bracket pair [?a :Person | :Company] restricts the variable ?a
to be the identifier of a resource whose type is :Person or :Company

KG
SQL

7 July 2021 Introducing KGSQL

Implementation

● Obviously implementing KGSQL with RDF statement reification would be very inefficient

● However, there is an implementation that is both simple and efficient:

– Store each statement as a quad: subject, verb (predicate), object, statement ID
– RDF “triple stores” are, in fact, based on quads

● The fourth component is the name of the named graph
● The fourth component could be used for the statement identifier
● The namespace of the statement identifier could be used as the name of the named

graph
– The statement ID is the primary key

● A tree index for the primary key would group statements by the namespace of the
primary key and therefore group statements by namespace

KG
SQL

7 July 2021 Introducing KGSQL

Implementation Technicalities

● A statement in KGSQL is an instance of the property of the statement.

● For example if :Fred [?e :name] “Fred” then ?e has type :name.

● However, one cannot assert ?e rdf:type :name as doing so would result
in an infinite series of statements:

● So in KGSQL reification is not quite
universal

?e :name
rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:typ
e

rdf:type
rd

f:type

...

KG
SQL

7 July 2021 Introducing KGSQL

Implementation Technicalities

● The following RDF builtin resources are not needed by KGSQL:

– rdf:Statement, rdf:subject, rdf:predicate, rdf:object

– rdf:CompoundLiteral, rdf:value
– rdf:List, rdf:first, rdf:rest

● In addition,

– Multiplicities allow one to retrieve elements of linked lists almost as
succinctly as the array notation in programming languages

– KGSQL lists might be implemented as arrays to improve performance

KG
SQL

7 July 2021 Introducing KGSQL

KG Definition Revisited

● Definition: A node- and edge-labeled directed multigraph is
an 8-tuple (V, E, s, t, ΣV, ΣE, ℓV, ℓE) such that

 1. V is a set of nodes and E is a set of edges.

 2. s: E V and t: E V are functions that specify the ⟶ ⟶
source and target nodes of the edges.

 3. ΣV is a set of node labels, and ΣE is a set of edge labels.

 4. ℓV: V Σ⟶ V and ℓE: E Σ⟶ E are functions that specify
the labels of the nodes and edges.

● Note that V and E need not be disjoint.

How is KGQ an implementation of the definition of
a knowledge graph?

V is the set of resources
E is the set of statements.
E is almost a subset of V.
The functions s and t are the subject and object of
a sentence.
Node and edge labels (Σ

V
 and Σ

E
) are bracket

pairs.

ℓ
V
: V Σ⟶

V
 maps a resource to the bracket pair specifying the resource identifier and its type(s).

ℓ
E
: E Σ⟶

E
maps a statement to the bracket pair specifying the statement identifier and its property

or properties.

KG
SQL

7 July 2021 Introducing KGSQL

Other Graph Query Languages

● There are many other graph query languages

● None presumes that every property, relationship and type specification is reified

● None takes full advantage of the near universal reification of KGSQL

● The closest graph notions and query languages are the following:

– RDF* is an improvement over RDF but is still based on RDF reification
– A property graph is a special kind of knowledge graph

● Relationships (edges) are reified
● Edges can have properties but do not participate in relationships
● Properties are not reified

KG
SQL

7 July 2021 Introducing KGSQL

Conclusion

● KGSQL has some useful features as a language for knowledge
representation using graphs

– Supports non-graph structures such as arrays, trees, and
JSON

● KGSQL resolves some of the issues with using RDF for
representing KGs

● There is an efficient implementation using existing RDF stores
● There are opportunities for other implementation improvements

KG
SQL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

