
Decision Rationales as
Models for Explanations

Kenneth Baclawski
Northeastern University

Boston, Massachusetts USA
Ken@Baclawski.org

Abstract
  A  decision  rationale  describes  the  reasons  for  a  decision  in  an
engineering  or  software  development  process,  so  it  is  a  kind  of
explanation.  Conversely, explanations are commonly for decisions that
have been made.  In this  article,  we develop a reference ontology for
decision rationales, which captures the common features of explanations
for decisions in a domain-independent manner.  The intention is to tie
together the many techniques for explainability in different domains so
that the techniques can be shared and possibly even interoperate with one
another.

1  Introduction
A decision  rationale  is  an  artifact  that  describes  the  reasons  for  a
decision.   In  practice,  organizations  commonly  do  not  record  the
knowledge generated during a decision making process.  As a result, it
can be an expensive and painful process to revisit a past decision when it
becomes  apparent  that  the  decision  is  no  longer  appropriate  (Spacey
2016).  This  problem  has  been  recognized  for  software  development
processes,  and  there  are  now  a  number  of  software  tools  that  assist

mailto:Ken@Baclawski.org


developers  in  capturing  and  managing  decision  rationales  (See:
Section 5)

It should be apparent that decision rationales are a form of explanation;
namely,  the  answer to  why a decision was made.   Explanations  have
recently become an important issue.  As stated in the Communiqué of the
Ontology  Summit  (2019),  “With  the  increasing  amount  of  software
devoted to industrial automation and process control, it is becoming more
important than ever for systems to be able to explain their behavior.  In
some domains, such as financial services, explainability is mandated by
law.   In  spite  of  this,  explanation  today  is  largely  handled  in  an
unsystematic manner, if it is handled at all.”

While  not  all  explanations  are  in  response  to  a  decision,  such
explanations are a significant share of all explanations.  Accordingly, a
framework  for  decision  rationales  would  contribute  to  a  common
framework  for  explanations  in  general.   In  this  article  we  develop  a
reference ontology for decision rationales.  A reference ontology is an
intermediate ontology that is more specific than foundational ontologies
(also  known  as  “upper  ontologies”)  but  more  general  than  domain
ontologies.   A reference  ontology  deals  with  a  specific  issue  but  is
otherwise domain-independent.  The advantage of a reference ontology is
that it can link together techniques from different domains for purposes
such  as  data  integration,  software  reuse  and  interoperability.   In
particular,  research  and  tools  for  decision  rationales  for  engineering
processes could be used for making other systems more explainable.

The  reference  ontology  that  we develop  originated  from the  work  of
Sriram  (2002)  as  well  as  (Duggar  and  Baclawski,  2007).   The
requirements for this ontology were taken from wide range of sources,
especially from the Ontology Summit 2019 Baclawski et al (2019), and
the  fields  of  Explainable  Artificial  Intelligence  Srihari  (2020),
commonsense  knowledge  and  reasoning  Berg-Cross  (2020),  medical
explanations Baker, Al Manir, Brenas, Zinszer, and Shaban-Nejad (2020),
and financial explanations (Bennett 2020).



To illustrate a decision making process, we will use a running example of
a specific decision making process for dealing with a problem in industry
known  as  No-Trouble-Found  (NTF)  or  No-Faults-Found  (Accenture
Communications 2016).  The NTF problem is that components used in
application  areas,  such  as  automobiles,  electric  utilities,  and
manufacturing, have mechanisms for indicating component failure. The
failure is typically advertised with an alarm.  When an alarm is raised, the
component  may be  replaced at  little  or  no cost  under  the  terms  of  a
warranty  or  service  contract.  The  component  that  raised  the  alarm is
returned to  the supplier  and tested in  their  laboratory.  Remarkably,  as
much  as  25% to  70%  of  the  time,  the  returned  component  operates
correctly when tested.  To deal with the problem, the manufacturer will
need to test the returned components to determine whether they function
correctly.  This will generally involve a series of tests that are used to
make the decision about whether a component is actually faulty as shown
in Figure 1.  The figure shows a three-step decision making loop, but an
actual decision making process for NTF could have many more steps.
While the running example we are using is relatively specific, it is similar
to  many  other  decision  making  processes  in  which  there  are  three
alternatives: accept, reject or get more information.

Figure 1: Sequential Hypothesis Flowchart for Electronic Systems and
Components Evaluated as “Suspect NTFs” from  Baclawski et al (2018)



In  Section 2,  we  give  some  background  for  decision  rationales  and
compare them with explanations.  We then give some of the reasons why
it is useful to document decision rationales in Section 3.  Generally, one
must capture decision rationales immediately or not at all.  Consequently,
decision rationale management must be an integral part of the software
development process.  Similarly, explainability should drive the software
engineering  process  from the  earliest  stages  of  planning,  analysis  and
design (Clancey 2019).   In Section 4 we discuss  the process whereby
decision  rationales  are  developed.   The  reference  ontology  decision
rationales  is  presented  in  Section 5.   We  end  with  a  conclusion  and
acknowledgments.

2  Background
In  this  section  we  give  some  background  on  decision  rationales  and
compare them with the more general  concept  of an explanation.   The
Ontology  Summit  2019  covered  the  notion  of  explanation  so  it  is
worthwhile to review the definition of this concept given there:

An explanation is  the answer to the question “Why?” possibly
also including answers to follow-up questions such as “Where do
I  go  from  here?”   Accordingly,  explanations  generally  occur
within the context of a process, which could be a dialog between a
person and a system or could be an agent-to-agent communication
process between two systems.  Explanations also occur in social
interactions  when  clarifying  a  point,  expounding  a  view,  or
interpreting  behavior.  In  all  such  circumstances  in  common
parlance one is giving/offering an explanation (Ontology Summit
2019).

While explanation has a long philosophical history dating back at least to
5000 BCE, formal treatments of rationales are relatively recent.  Perhaps
the  earliest  such  treatment  was  the  school  of  philosophy  known  as
scholasticism  that  dominated  teaching  in  European  universities  from
roughly 1100 to 1700.  It focused on how to acquire knowledge and how



to communicate effectively so that it may be acquired by others. It was
thought that the best way to achieve this was by replicating the discovery
process  and  by  arguing  for  and  against  alternatives  (O'Boyle  1998).
While scholasticism arose in the context of religious instruction, it soon
spread to other disciplines.

Another example of scholarly work on decision rationales is in the legal
domain.  From ancient times, the rationales for legal decisions have been
recorded and used in subsequent decisions.  This is the basis for what is
now  referred  to  as  “common  law.”   There  is  a  substantial  scholarly
literature on decision rationales in the legal domain.  This should not be
too surprising since argumentation is so fundamental to legal decisions,
and since it is still a requirement that not only the decision itself but also
the rationale for the decision should be documented.

In  spite  of  rationales  being  common  in  the  legal  domain,  they  are
relatively uncommon in law codes, and even when laws have explicitly
stated rationales, their standing is ambiguous.  The Constitution of the
United States has a published rationale in the form of a series of articles
called  the  Federalist  Papers  (Hamilton,  Madison,  and  Jay,  1787).
However, the Constitution itself does not explicitly include a rationale, so
whether the Federalist Papers could be used by courts for deciding cases
is  controversial.   There  is  only  one  amendment,  namely  the  Second
Amendment, that explicitly includes a rationale, albeit a very brief one.
The interpretation of this rationale and of the amendment as a whole has
been highly controversial.  Prior to the year 2008, the rationale was taken
to be a  limitation on the amendment,  essentially  giving the states  the
power to organize militias and allowing individuals to bear arms for this
purpose.   Up to  that  time,  states  and the  federal  government  had the
authority to regulate ownership of arms for other purposes.  However, in
2008,  the  United  States  Supreme  Court  reinterpreted  the  Second
Amendment by ignoring the rationale (Brennan Center 2018; Greenhouse
1998).  From the second citation: “Many are startled to learn that the U.S.
Supreme Court  didn't  rule  that  the  Second Amendment  guarantees  an



individual's right to own a gun until 2008, when District of Columbia v.
Heller struck down the capital's law effectively banning handguns in the
home.  In fact,  every other  time the court  had ruled previously,  it  had
ruled otherwise.”  This is good case study to show that including or not
including a rationale can result in dramatically different interpretations of
a law.

3  Purpose of Documenting Decision 
Rationales
We now give  some of  the  reasons  why decision  rationales  should  be
documented  and  reviewed.   Put  more  succinctly  (if  somewhat
inaccurately), we give a rationale for rationales.

An important part of every decision rationale for software development is
the  list  of  the  alternatives  that  were  considered.   Documenting  these
options  can  be  useful  in  themselves.   According  to  Sullivan  (1999),
“...part of the value of typical software product, process or project is in
the  form  of  embedded  options.   These  real  options  provide  design
decision-makers with valuable flexibility to change products and plans as
uncertainties are resolved over time.”

Possibly  the  most  dramatic  example  of  this  was  a  decision  for  the
Ariane V rocket  software  that  was  not  reconsidered  for  the  Ariane V
rocket.  The result was that the rocket crashed on its first launch (Gleick
1996).

It  might  be  worth  examining  in  some  more  detail  what  the  design
decision was that resulted in the Ariane V crash.  The Ariane V rocket
reused  vehicle  guidance  software  from the  Ariane IV.  These  different
rockets used different processors and the reuse of the Ariane IV software
code failed to operate as expected in the Ariane V.  The failure occurred
in the inertial reference system, or the Système de Référence Inertielle
(SRI).  The failure was due to a software exception during execution of a
data conversion from a 64-bit floating point in a variable for Horizontal
Bias (BH) to a 16-bit signed integer value.  The floating point number



which was converted had a value greater than what could be represented
by a 16-bit  signed integer.   The use of  a  16-bit  signed integer  in the
Ariane IV was a design decision that was made during the development
of the SRI.  This design decision was documented and even rigorously
proven to be correct for the Ariane IV.  Unfortunately, the specifications
for the Ariane IV that were used in this proof are not satisfied by the
Ariane V.  From the Inquiry Report, “The reason for the three remaining
variables, including the one denoting horizontal bias, being unprotected
was  that  further  reasoning  indicated  that  they  were  either  physically
limited or that there was a large margin of safety, a reasoning which in
the case of the variable BH turned out to be faulty. It is important to note
that  the decision to protect  certain variables  but not  others  was taken
jointly by project partners at several contractual levels.”  However, the
reasoning (i.e., the proof) was not included in the source code so it was
not reviewed when the software was reused for the Ariane V.  This is an
example to show that a formal proof of correctness of software is useless
if it is not reconsidered when circumstances change.  It also shows the
risks associated with software reuse (Lions 1996).

If, as it is hoped, systems begin to be more explainable, the experiences
with  rationale  management  could  be useful  lessons.   As the Ariane V
disaster  illustrates,  one  such  lesson  is  the  issue  of  decision  rationale
reusability.  The purpose of reusability is to save time and resources and
reduce redundancy by taking advantage of assets that have already been
created in some form within the software product development process
(Lombard Hill Group 2014).  Unfortunately, software reuse has not been
very successful in general (Schmidt 1999).

4  The Decision Rationale Development 
Process
The process model for decision rationale development is a basic decision
making loop, but it extends it by specifying a data model for the resulting
rationale.  A use case diagram showing two of the actors and activities
during formal documentation and use of decision analysis is shown in



Figure 2,  taken  from  (Duggar  and  Baclawski,  2007).   The  two
roles/actors  in  this  figure  are  the  developer  of  the  decision  analysis
documentation and the user  of  the decision analysis.   The user  is  the
agent who is seeking an explanation of the decision.  The developer can
perform a number of actions on the repository of decision rationales, such
as  create,  modify  and  reuse/repurpose.   Other  use  cases  that  are  not
shown are concerned with activities such as reconsidering decisions and
inference/reasoning.

The process model for decision rationale development is usually a sub-
process  of  a  larger  development  process.   When  an  issue  has  been
encountered for which a decision is required, a decision making process
is performed.  Determining and identifying the issue to be resolved may
itself be a decision that requires its own decision making process.  An
example of a process for developing the decision rationale is shown in
Figure 3.   The  process  involves  a  number  of  steps  and  iterations  as
follows:

1. Enumerate  all  the  assumptions  that  are  relevant  and  can  be
inferred based on the context or situation.

Figure 2: Use Case Diagram for Decision Rationales



2. Exhaustive list  of  all  the  alternatives  that  can  be chosen for  a
particular decision have to be documented.

3. Similarly, a list of criteria based on which any alternative would
be chosen for an issue/problem is documented.

4. Both step 1 and step 2 are done iteratively till a satisfied list of
both alternatives and criteria are available.

5. Relevant  arguments  for  each  alternative  based  on  the  list  of
criteria are obtained.

6. Based on the arguments put forward a decision is recommended.

The  whole  process  from  steps  1  to  6  could  then  be  iterated  till  a
satisfactory decision is obtained.

This decision rationale development loop is a special case of the general
decision  making  loop  developed  in  (Baclawski  et  al,  2017).   The
ontology for the decision making loop is available online at (Baclawski
2016).

Figure 3: Example of a Decision Rationale Development Loop



For the running example of the NTF decision making process, each step
in the process can have three possible outcomes.  The component may be
found  to  be  actually  faulty,  the  component  may  be  found  to  be
functioning normally, or the component test was unable to establish the
condition of the component with sufficient confidence.  When the last of
these occurs, another test is performed.  The rationale for each step in this
process  has  three  alternatives.   The  criterion  for  each  alternative  is
commonly a range of values for a measurement.  The argument for the
decision  of  one  step  could  be  as  simple  as  checking  whether  the
measurement is within the range for the corresponding alternative or it
could be a more complex statistical  or machine learning classification
involving both the current measurement and previous measurements.

Some  software  tools  are  available  for  rationale  development.
Compendium (2020), designVUE (2020) and SEURAT Website (2020)
are examples of open source projects that include support for capturing
decision rationales. Rationale  (2020) is a commercial product.  Gelder
(2007) reviews this product.  The primary purpose of these tools is to
document design decisions during software development.  The tools can
also be used for documenting more general  argumentation,  such as in
legal cases.  These tools do not appear to make use of ontologies.

5  Decision Rationale Reference Ontology



We  now  formalize  the  notion  of  a  decision  rationale  as  a  reference
ontology.  The basis for our ontology is the Design Recommendation and

Figure 4: The Design Recommendation and Intent Model

Figure 4: The Design Recommendation and Intent Model



Intent  Model  (DRIM)  that  was  developed  for  engineering  design
decisions but is not limited to that domain (Sriram 2002).  The DRIM is
shown in Figure 4, using the Object Modeling Technique.  We also used
some ideas  from our  own decision  rationale  ontology  in  Duggar  and
Baclawski (2007) which was intended for software engineering using the
Eclipse Process Framework.

A number  of  other  reference  ontologies  were  important  inputs  to  our
ontology,  including  reference  ontologies  for  situation  awareness,
provenance and decision making.  Situation awareness means simply that
one knows what is going on around oneself. In operational terms, this
means that one knows the information that is relevant to a task or goal.
The notion of decision rationale fits well with situation awareness, since
a decision rationale is the awareness of the information relevant to the
making of a decision.  Accordingly, we view a decision rationale as a
situation.  The ontology for situations and situation awareness was first
developed in (Baclawski, Malczewski, Kokar, Letkowski, and Matheus,
2002).

The  provenance  of  an  entity  represents  its  origin.   This  includes
descriptions of the other entities and the activities involved in producing
and influencing a given entity.  All of the various objects involved in a
decision rationale are entities for which provenance is important.   For
example, the decision rationale itself, the problem that is to be solved, the
various proposals for solving a problem, and the various arguments in
favor of or opposed to each proposal, should all be annotated with the
person (or other agent) that created the entity, the time when the entity
was created, and so on.  The PROV ontology was used for provenance
information (PROV Ontology 2013).

Given that  a  decision rationale  is  the  recording of  a  decision  making
process, the process whereby the decision is made should be compatible
with the structure of the decision rationale.  The ontology for decision
making that  we use is  the Knowledge Intensive Data System (KIDS)
(Baclawski et al, 2017).  In the KIDS framework, the decision making



process is a loop in which a situation evolves iteratively to achieve the
final decision.  In the process, subsidiary decisions will be made, each
represented  by  its  own situation.   The  decision  rationale  ontology  is
intended to be one kind of situation that the KIDS framework applies to.

While  the  decision  rationale  ontology  we  present  here  is  intended
primarily  for  software  development  decision  making,  it  is  domain-
independent and so has other potential application domains.  It could be
applied to more general engineering decision making; indeed, this was
the  original  domain  for  the  DRIM  model  from  which  the  decision
rationale  ontology  was  derived.   Another  potential  domain  is  legal
decisions.   While  we are not  aware of any ontologies  specifically  for
legal decision rationales, the legal literature does have examples of work
on representing both classifications and argumentation rules (Berman and
Hafner, 1993; Loui and Norman, 1995).

The decision rationale ontology was developed using Protégé (Protégé
2004; Musen 2015).  It imports the PROV ontology so that provenance
information can be maintained in a standard manner PROV (2013), and
all  of  the  decision  rationale  ontology  classes  are  subclasses  of  the
prov:Entity class, except for the Collaboration class which is a subclass
of  prov:Activity.   The  Rationale  class  is  a  subclass  of  the
kids:DirectiveSituation  class  of  the  KIDS  ontology  Baclawski  et  al
(2017)  which,  in  turn,  is  a  subclass  of  the  sto:Situation  class  of  the
Situation Theory Ontology (Baclawski, Malczewski, Kokar, Letkowski,
and  Matheus,  2006).   The  Decision  Rationale  Ontology  is  available
online (Baclawski 2020).



Figure 5 shows the class hierarchy of the Decision Rationale Ontology.
The notation in this figure uses a UML-like notation, but the classes in
the  hierarchy  are  not  limited  to  classes  in  object-oriented  software
engineering.  As noted earlier, all of the classes are subclasses of either
prov:Entity or prov:Activity.  As a result, all decision rationale artifacts
will  have  all  of  the  many features  that  the  PROV ontology provides,
including  versioning  and  provenance  information.   We  added  an
explanation attribute to the prov:Entity class so that all decision rationale
artifacts  have  a  uniform  way  to  explain  their  role.   Potentially,  the
explanation  attribute  could  contribute  to  an  explainability  process  as
discussed below.  The explanation attribute is specified to be a string, but
other media could also be used such as diagrams or videos.

The central class in the ontology is the Rationale class.  This class reifies
the notion of a decision rationale.   In addition to being a subclass of
prov:Entity, the Rationale class is a subclass of kids:DirectiveSituation
which  links  the  Rationale  with  the  ontology  of  the  decision  making
process that produces the decision rationale.  During such a process, a
decision may depend on other decisions, and this is represented by the
dependsOn object property.  In the running example of an NTF decision
making process, each step of the process depends on the previous step.
To understand how the Rationale class represents a decision rationale we
need to examine the object properties shown in Figure 6.  The Goal class
represents the problem that the decision process is solving.  For the NTF

Figure 5: Class Hierarchy of the Decision Rationale Ontology



problem the goal is to determine whether or not a returned component is
actually faulty.  Various alternative Proposals are suggested, one of which
is selected as the recommendation.  A Proposal can have sub-proposals
specified by the consistsOf object property.   In the NTF example,  the
three alternatives are the proposals.  In this example, a proposal could
have a more complex structure if a component test  is more elaborate.
Indeed, a component test could itself be a decision making process.  The
proposals need to satisfy various Criteria.  The Criterion class serves to
specify how important a particular requirement is, where an importance
level  of  1  means  that  the  criterion  is  mandatory,  while  lower  levels
represent  criteria  that  are  desirable  but  not  essential.   The  actual
requirement  is  specified  by  the  Intent  class,  which  has  subclasses
Objective,  Constraint  and  Function  that  specify  different  kinds  of
requirements.  An Objective is a characteristic that is to be optimized.  A
Constraint is a mandatory restriction such as a maximum allowed value.
A Function requirement is a performance characteristic of activities or
behavior of the solution to the problem.  For the NTF example, the Intent
could be a Constraint if the test is a simple measurement or the Intent
could be a Function if the test is a more complex test of the behavior of
the component.

Figure 6: Object Properties of the Decision Rationale Ontology



Since the decision is a selection among alternatives, one needs some way
to distinguish them.  The is done by means of Reviews.  Each Review
gives an argument either in favor of a Proposal or against a Proposal.
The subclasses SupportiveReview and OpposingReview distinguish these
two  cases.   The  explanation  for  the  final  decision  that  selects  the
recommendation is the Justification.  Since a Justification is supportive of
the recommended Proposal, Justification is a subclass SupportiveReview.
Reviews  can  cite  other  Reviews and Criteria  in  their  explanation.   A
Review  can  also  cite  Context  information.   Context  represents
background information that may be relevant to the decision.  There are
two  subclasses  of  Context.   The  Evidence  subclass  represents
observations and experiments that are  relevant to  the decision process
and believed to be facts.  The Assumption subclass represents conjectural
information that may or may not be the case but which is relevant to the
decision  process.   Context  information  may  include  references  to
published research papers or books.

Reviews can be the result of a collaborative process involving several
individuals.  Such a process could be cooperative or antagonistic.  If the
latter, then the collaboration is likely to represent a negotiation process.
At first it appears that Collaboration is unconnected with any Reviews or
individuals.  In fact, there are connections, but they are represented using
object properties of the PROV ontology, and so do not appear in Figure 6.

The  Decision  Rationale  Ontology  is  derived  from  the  DRIM  model
shown  in  Figure 4.   Most  of  the  classes  in  the  Decision  Rationale
Ontology have the same (or very close) meaning as the corresponding
class  in  DRIM.   The  Context,  Evidence,  Assumption,  Objective,
Constraint, Function, Goal and Proposal are the same as in DRIM.  For
more about what these classes mean, see Chapter 8 of (Sriram 2002).
The  Review  class  hierarchy  was  derived  from  the  Justification  and
Recommendation classes in DRIM.  For example, Recommendation has
been replaced by the recommendation object property, but the meaning is
largely the same.   The Decision Rationale  Ontology reifies  as classes



some characteristics of DRIM that were not classes or were implicit.  The
negotiates-with relationship is reified as the Collaboration class, which
allows  the  collaboration  to  be  a  subclass  of  prov:Activity.   The
relationships with Intent were reified so that they could have additional
information.  The Intent class itself differs only in that Goal is no longer a
subclass.  This was done to make it easier to integrate the ontology with
decision making ontologies such as KIDS.  The Designer class of DRIM
is  represented  with  the  prov:Agent  class.   The  versions-of  and  is-
alternative-to  object  properties  are  represented  with  the
prov:wasDerivedFrom,  prov:alternateOf,  and  prov:specializationOf
object  properties  of  PROV,  although  the  meanings  are  somewhat
different.  The Plan, Artifact and Physical Object classes of DRIM were
not included because they deal with the subsequent implementation of the
decision, which is important but out of scope to the decision rationale.

There are several steps in formulating any explanation about a system.
As noted above, an explanation is the answer to the question “Why?”
possibly also including answers to follow-up questions.  The goal that is
being achieved by the decision rationale should be explained sufficiently
so  that  one  can  find  the  decision  rationales  that  are  relevant  to  the
question by using search techniques.  The explanations associated with
each entity in a decision rationale may be used to answer questions about
the decision rationale.  The justification of a decision rationale explains
why the decision proposal was selected (i.e.,  the answer to a question
about  why the  recommended proposal  was  chosen).   For  the  running
example of the NTF decision making process, the explanation for why
the component was either put back in the warehouse or thrown away is in
the  Justification  of  the  final  recommendation  of  the  process.   Other
reviews  explain  why alternative  proposals  were  not  selected  (i.e.,  the
answer to a counter-factual question about why another proposal was not
chosen).  In the NTF example, one might ask why further testing was not
performed.  This would be especially important if  the component was
very  expensive.   The  criteria  that  constrain  the  potential  proposals
explain why other possibilities were not considered (i.e., the answer to



contrastive questions about why another decision was not considered).  In
the NTF example,  one might ask why the customer who returned the
component was not contacted to determine more information about why
the component was thought to be faulty.  The explanation is simply that
the goal was only to determine whether the component was faulty, not
why it was returned.  The dependencies among decision rationales allow
for follow-up questions that explore decisions in more depth.  In the NTF
example, one might inquire about the reason for the goal or why the tests
were being performed in the particular order and not some other order.
These  are  concerned  with  the  design  of  the  process  rather  than  the
process  steps.   The design was the result  of  its  own decision making
process and rationale.  An example of how one can optimize the order of
the steps in the NTF decision making process is developed in Section II
of (Baclawski et al, 2018).

6  Conclusion
We  have  shown  that  decision  rationales  are  an  effective  basis  for
explaining some features of a system.  Specifically, we have shown how
decision  rationales  can  be  used  to  answer  all  of  the  main  kinds  of
explanation  questions  for  decisions:  direct  questions,  counter-factual
questions,  contrastive  questions,  and  followup  questions.   We  also
discussed  how decision  rationales  can  be  developed,  and  presented  a
reference ontology for decision rationales.  Having explored the concept
of  the decision  rationale,  we propose that  they could be a  significant
contributor to explainability.

Acknowledgments
This work was conducted using the Protégé resource, which is supported
by grant GM10331601 from the National Institute of General Medical
Sciences of the United States National Institutes of Health.



References
Baclawski, K. (2016). The KIDS Ontology version 2.0. Retrieved from 
http://bit.ly/2xZuTNJ

Baclawski, K. (Ed.). (2019). Ontology Summit 2019: Explanations. 
Retrieved from http://bit.ly/2z0JGY4

Baclawski, K. (2020). Rationale ontology. Retrieved from 
https://bit.ly/3eg4HQO

Baclawski, K., Bennett, M., Berg-Cross, G., Fritzsche, D., Sharma, R., 
Singer, J., . . . Whitten, D. (2020). Ontology Summit 2019 Communiqué: 
Explanation. Applied Ontology. DOI: 10.3233/AO-200226

Baclawski, K., Chan, E., Gawlick, D., Ghoneimy, A., Gross, K., Liu, Z., 
& Zhang, X. (2017). Framework for ontology-driven decision making. 
Applied Ontology, 12 (3-4), 245–273. Retrieved from 
https://bit.ly/2LYPszt

Baclawski, K., Chystiakova, A., Gross, K., Gawlick, D., Ghoneimy, A., 
& Liu, Z. (2019, April). Use cases for machine-based situation awareness
evaluation. In IEEE Conference on Cognitive and Computational Aspects
of Situation Management.

Baclawski, K., Malczewski, M., Kokar, M., Letkowski, J., & Matheus, C.
(2002, November 4). Formalization of situation awareness. In Eleventh 
OOPSLA Workshop on Behavioral Semantics (pp. 1–15). Seattle, WA.

Baclawski, K., Malczewski, M., Kokar, M., Letkowski, J., & Matheus, C.
(2006). The Situation Theory Ontology. Retrieved from 
http://bit.ly/1yrikQj

Baker, C., Al-Manir, M., Brenas, J., Zinszer, K., & Shaban-Nejad, A. 
(2020).

Applied Ontologies for Global Health Surveillance and Pandemic 
Intelligence. J. Wash. Acad. Sci.



Bennett, M. (2020). Financial Industry Explanations. J. Wash. Acad. Sci.

Berg-Cross, G. (2020). Commonsense and Explanation: Synergy and 
Challenges in the Era of Deep Learning Systems. J. Wash. Acad. Sci..

Berman, D., & Hafner, C. (1993). Representing teleological structure in 
case-based legal reasoning: The missing link. In Fourth Int. Conf. On 
Artificial Intelligence and Law (pp. 50–59).

Big Trouble with “No Trouble Found” Returns: Confronting the High 
Cost of Customer Returns. (2016). Retrieved from http://bit.ly/2vO5QZD

Clancey, W. (2019, February). Explainable AI Past, Present, and Future: 
A Scientific Modeling Approach. Retrieved from http://bit.ly/2Scjvo6

The Compendium Website. (n.d.). Retrieved from http://bit.ly/3avsavd

The designVUE Website. (n.d.). Retrieved from http://bit.ly/2yFGpA3

Duggar, V., & Baclawski, K. (2007, November 5). Integration of decision
analysis in process life-cycle models. In International Workshop on 
Living with Uncertainties. Atlanta, Georgia, USA.

Gleick, J. (1996, December 1). A bug and a crash: Sometimes a bug is 
more than a nuisance. New York Times Magazine.

Greenhouse, L. (27, 2008, June). Justices, ruling 5-4, endorse personal 
right to own gun. In The new york times. Retrieved from 
https://nyti.ms/3giVER3

Hamilton, A., Madison, J., & Jay, J. (1787). The Federalist: a Collection 
of Essays, Written in Favour of the New Constitution, as Agreed upon by 
the Federal Convention, September 17, 1787, in two volumes (1st ed.). 
New York: J. and A. McLean.

How the NRA Rewrote the Second Amendment - Brennan Center for 
Justice. (2018). Retrieved from https://bit.ly/2zwypCq

Lebo, T., Sahoo, S., & McGuinness, D. (Eds.). (2013, April 30).

PROV Ontology (PROV-O). Retrieved from http://bit.ly/2xPcx2k



Lions, J. (1996). ARIANE 5 Flight 501 Failure: Report by the Inquiry 
Board. Retrieved from https://bit.ly/2ZzUoDb

Loui, R., & Norman, J. (1995). Rationales and argument moves. Artif. 
Intell. Law , 3 , 159–189. Retrieved from 
https://doi.org/10.1007/BF00872529

Musen, M. (2015, June). The Protégé project: A look back and a look 
forward. In AI Matters. Association of Computing Machinery Specific 
Interest Group in Artificial Intelligence (Vol. 1). Retrieved from 
https://bit.ly/2zwqBQY

O’Boyle, C. (1998). The art of medicine: medical teaching at the 
University of Paris, 1250-1400. Leiden: Brill.

Protégé website. (2004). Retrieved from http://bit.ly/AASA

The Rationale ® Website. (n.d.). Retrieved from https://bit.ly/2TKLgIa

Schmidt, D. (1999). Why software reuse has failed and how to make it 
work for you (Tech. Rep.). Nashville, Tennessee: Vanderbilt University. 
Retrieved from https://bit.ly/2M1vGUc

The SEURAT Website. (n.d.). Retrieved from http://bit.ly/2VPfLg3

Spacey, J. (2016). What is a design rationale? Retrieved from 
https://bit.ly/3c5vf5V

Srihari, S. (2020). Explainable Artificial Intelligence: An Overview. J. 
Wash. Acad. Sci.

Sriram, R. (2002). Distributed and Integrated Collaborative Engineering 
Design. Glenwood, MD 21738: Sarven Publishers. ISBN 0-9725064-0-3

Sullivan, K. (1999). Software design as an investment activity: A real 
options perspective. Real Options and Business Strategy: Applications to 
Decision Making, 215–261.

van Gelder, T. (2007). The rationale for Rationale ®. Law, Probability 
and Risk, 6, 23–42. Retrieved from doi:10.1093/lpr/mgm032



What Is Software Reuse? (2014). Lombard Hill Group. Retrieved from 
http://www.lombardhill.com


	 Abstract
	 1 Introduction
	 2 Background
	 3 Purpose of Documenting Decision Rationales
	 4 The Decision Rationale Development Process
	 5 Decision Rationale Reference Ontology
	 6 Conclusion
	 Acknowledgments
	 References


