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Abstract

With the increasing amount of software devoted to industrial automation and
process control, it is becoming more important than ever for systems to be able
to explain their behavior. In some domains, such as financial services, explain-
ability is mandated by law. In spite of this, explanation today is largely handled
in an unsystematic manner, if it is handled at all. The decisions of modern arti-
ficially intelligent systems, such as those built on deep neural networks, are es-
pecially difficult to explain. The goal of the recent Ontology Summit 2019 was
concerned with the role of ontologies for explaining the functioning of a system.
More specifically, the Ontology Summit focused on critical explanation gaps and
the role of ontologies for dealing with these gaps. The sessions examined cur-
rent technologies and real needs driven by risks and requirements to meet legal
or other standards. The sessions covered explainable artificial intelligence, com-
monsense reasoning and knowledge, the role of narrative, and explanations in the
fields of finance and medicine. The goal of this Communiqué is to foster research
and development of approaches to explanations and to drive towards explanation
support which can be incorporated into both knowledge engineering processes and
ontology design best practices.
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1 Introduction

The last few years have seen a substantial increase in the use of machine learning (ML)
techniques for solving important problems in the field of Artificial Intelligence (Al).
These advances have been driven by the availability of massive amounts of raw data.
The ML techniques construct complex statistical models by processing large datasets.
Unfortunately, it is difficult to explain how these ML models come to their conclusions,
since each decision is, in principle, the result of a program that includes the entire
dataset that was used to develop the model. This has led to the perception that ML
models are too “deep” and “mysterious” to be adequately explained. Whether or not
this is an accurate perception, to solve the problem of explaining the functioning of an
ML model or, indeed, any large complex system, it is necessary to address the issue of
what an explanation is, as well as what criteria can be used to evaluate the accuracy of
an explanation and its suitability for a purpose.

In his presentation at the Ontology Summit 2019, Derek Doran asked the question
“Okay but Really... What is Explainable AI?” (Doran, 2018). He found that there
was wide disagreement about the answer to this question. As a first approximation to
classifying this variety, he identified a hierarchy of explanation “types” an Al system
can exhibit:

1. Interpretable: I can identify why an input goes to an output.
2. Explainable: I can explain how inputs are mapped to outputs.
3. Reasoning: I can conceptualize how inputs are mapped to outputs.

To illustrate the distinctions among the three levels, consider the case of an appli-
cation for a loan that was denied. The following are examples of the three types of
explanation for answering the question “Why was my application for a loan denied?”

1. Interpretation: The account balance covariate in the logistic regression model
used to make decisions explains 89.9 % of residual variance.

2. Explanation: The system denies loan applicants with low bank account balances.

3. Reasoning: The system does not want to approve loans to those who do not show
evidence of being able to pay them off.

While all three types of explanation are expressed as natural language narratives, there
is a significant distinction among them. The first type rigorously expresses features
of the decision in terms of a statistical model. It has the most information and even
qualifies as a “proof,” but fails to relate the decision to the context in which the decision
was made. The second type is much better because it is now expressed in terms of
the customer context, even if it is not a fully rigorous proof. Yet the second type
only explains the function without explaining why that function is being used. The
third type is the best since it now explains why that function was used by the bank.
The third type uses formal reasoning to infer the rationale from the other types of
explanation (i.e., Interpretation and Explanation). What is not shown in the example



for the Reasoning type is that it should allow for an interaction with the customer with
the goal of achieving customer acceptance of the explanation.

While the first two types above may be adequate in some limited technical contexts,
for the most part, humans would demand the third and highest level. Accordingly, there
is general agreement with the following definition of explanation, “An explanation is
the ability to answer a how or why question and to answer a follow-up question to
clarify in a particular context.” This definition makes it clear that an explanation may
not be sufficient if it consists of a single generated answer. There should be a capability
for a dialog between the user and the system. A further consequence of this definition
is the importance of context. Since the notion of context is the subject of the Ontology
Summit 2018, the current Summit may be regarded as a continuation of the previous
Summit (Baclawski et al., 2018). Indeed, since context includes the answers to the six
question words Who, What, When, Where, Why and How, explanation is both part of
the context and depends on it.

The Ontology Summit 2019 sought to explore, identify and articulate how ontolo-
gies can bring value to the problem of automating explanations of complex systems in
general. The Summit dealt with this goal by first studying the notion of explanation in
a series of sessions in the Fall of 2018. This Communiqué begins with the background
and history of the notion of explanation in Section 2, based on what we learned in the
Fall sessions. The three most important areas that were identified in the Fall and stud-
ied at greater depth in 2019 were (1) Explainable Al (XAI), presented in Section 3,
(2) Commonsense Reasoning and Knowledge (CSRK), presented in Section 4, and (3)
Narratives, presented in Section 5. In addition, it was decided that some specific do-
mains should be studied to determine the kinds of problems that practitioners are facing
with respect to explanations. The two chosen domains were the Financial domain, pre-
sented in Section 6 and the Medical domain, presented in Section 7, both of which
were broadly defined. The findings of the summit are summarized in Section 8. The
Communiqué ends with a conclusion in Section 9 and acknowledgments in Section 10.

2 Background

An explanation is the answer to the question “Why?” as well as the answers to follow-
up questions such as “Where do I go from here?” Accordingly, explanations generally
occur within the context of a process, which could be a dialog between a person and
a system or could be an agent-to-agent communication process between two systems.
Explanations also occur in social interactions when clarifying a point, expounding a
view, or interpreting behavior. In all such circumstances in common parlance one is
giving/offering an explanation.

Among the first known attempts at understanding the ‘why’ of explanations were
those documented among Indian intellectuals and philosophers, beginning with the
knowledge collection called the Vedas (dating back to 5000 BCE). This philosophi-
cal tradition included notions of context, logic and explanation that are similar to the
modern conceptions. For example, there was a notion of syllogism that explicitly in-
corporated context into the structure of the syllogism. Explanation was also a part of
logical inference. More generally, explanation in the form of a dialog between a teacher



and a student appears throughout the Vedas.

Later in the classical Greek period, Aristotle provided a view of explanation as part
of a deductive process using reason to reach conclusions. In the Posterior Analytics
from his Organon, Aristotle proposed 4 types of causes (i7la) to explain things.
These were from either the thing’s matter (material cause), form (formal cause), end
(purpose or final cause), or agent (efficient cause).

The Summit considered not only Al systems that can explain their actions, but
also other smart engineering systems which cooperate with each other and aid humans.
With the increasing amount of software devoted to industrial automation and process
control, this capability is becoming more important than ever. Explanations include
expressing rationales, characterizing strengths and weaknesses, and projecting their
behavior into the future. Ontologies could play a significant role in explainable smart
systems by representing the conceptual framework that can be used for constructing
explanations. An ontology used for explanation would include terms for domain and
natural world concepts, relations, and activities.

Software today, whether a legacy system or a newly developed system, most com-
monly does not include explainability. Unfortunately, explainability cannot simply
be added as another module. Rather it should drive the software engineering process
from the earliest stages of planning, analysis and design. Explainability needs must
be empirically discovered during these stages (Clancey, 2019). Unfortunately, there
is little sensitivity to these needs as well as little experience with addressing them in
current systems and work practices (Clancey, 2019). One problem is that there are no
standards for evaluating the quality of explanations, so there are no objective criteria
for determining whether one has adequately implemented explainability (Baclawski,
2019a; Griininger, 2019). Another problem is that there can be disconnects among the
views of the stakeholders. Users generally view explainability as very useful, but in-
vestors do not perceive that it adds value (Grosof, 2019). Still other classical software
engineering problems arise such as “mission creep” in which requirements are added
later in the development process at a time when it is too late to modify the design to
accommodate the new requirements, resulting in cost overruns, delays and poor de-
signs (Grosof, 2019). Finally, there is a need for evaluating the quality of explanations.
Quality includes not only subjective measures of explainability but also whether the
explanations are verifiable and conform to standards.

Perhaps the most all-encompassing reason for developing explainability is the Gen-
eral Data Protection Regulation (GDPR) which states, “The data subject should have
the right ... to obtain an explanation of the decision reached ...” (Recital 71 GDPR,
2018; Tiddi, 2019). However, the extent to which the GDPR regulations themselves
provide a “right to explanation” is heavily debated. Given that explainability is still a
nascent research activity, it should not be surprising that the GDPR stops short of man-
dating this ability immediately. Nevertheless, the intent is to make it easier for users to
obtain explanations, especially for fully automated decision making systems.

A benefit of the use of ontologies in support of explanations is the potential for
improving interoperability between systems that otherwise would not have a common
framework for interoperation. The danger is that current efforts for explainability will
have many of the same undesirable characteristics that have been criticized for Al sys-
tems. One of these is fragility (also called brittleness) in the following sense: two per-



ceptively indistinguishable inputs with the same predicted label can be assigned very
different interpretations and explanations (Ghorbani, Abid, & Zou, 2019). Another is
siloing in the sense that each product employs completely different and incompatible
explanation techniques. While such products individually satisfy the requirement of
providing explanations, they cannot be consistently integrated into large scale systems.

3 Explainable Artificial Intelligence

Since the 1950s, when the term Artificial Intelligence was coined, there has been con-
siderable progress in this area. The 1980s was dominated with the rise of rule-based
systems. This period has been called “the first wave” of Al. Advancements in com-
puter hardware facilitated multilayered neural networks, which led to significant im-
provements in machine learning for certain classes of problems in the 2000s. This
was the “second wave.” There have been a number of proposals for what will be the
dominant focus of the upcoming “third wave,” For example, the Defense Advanced Re-
search Projects Agency (DARPA) views the third wave as contextual adaptation where
“systems construct contextual explanatory models for classes of real world problems”
(Gunning, 2018).

The first wave of Al produced several reasoning techniques, such as decision trees,
inference networks, Bayesian networks, statistical learning techniques, and the begin-
nings of neural networks. During the first wave, it was already recognized that these
systems were unable to provide adequate explanations (Jackson, 1986). As Ford et al
surmised, “...the inadequate approach to explanation found in most expert systems can
be a significant impediment to user acceptance” (Ford, Canas, & Coffey, 1993).

As the second wave took place, multilayered neural networks (deep learning) with
more than one hidden layer produced impressive results in a wide variety of classi-
fication problems. There was a tradeoff between performance and explainability. For
example, a major problem with neural networks is the lack of transparency. It was more
like a black box approach, where the following questions could not be adequately an-
swered:

Why did you do that?

Why not something else?

When do you succeed?

When do you fail?
e When can I trust you?
e How do I correct an error?

The DARPA XAI Program initially had a goal of addressing the above questions
by enhancing Al software to answer them (Gunning, 2018). See Figures 1 and 2. Note
that the DARPA XAI Program proposed that ontologies should be part of the solution.
The program also required the use of counterfactual arguments.



Sargur Srihari proposed that probabilistic AI (PAI) will be an important part of the
third wave of AI. While probability and statistics are related, there are fundamental
differences between them. Statistics analyzes observations to understand them, most
commonly in the form of a probabilistic model. Probability deals with models that al-
low one to make predictions and decisions when there is uncertainty. The probabilistic
models can be postulated a priori or estimated a posteriori using statistics. PAI focuses
on generative models in the form of probability distributions that can be queried. PAI
uses a variety of algorithms and architectures for knowledge representation, inference
and learning. It uses Probabilistic Graphical Models (PGMs) to find the most probable
explanation (MPE), also called the maximum a posteriori probability assignment. As a
result, PAI is more suited to explainability than the techniques employed in the first two
waves of Al. Sargur Srihari has used PGMs and MPE in his work on forensics which
lends itself to a combination of deep learning and probabilistic explanation (Srihari,
2019).

Explainable Al defines a field of research, not a particular “type” of Al. There exist
unique notions of ‘explanations’, making problem- or context-independent explainable
Al work inappropriate. For Al systems to be understandable, symbolic systems and
reasoning should be integrated to provide operationally effective communications of
the internal state and operation of the system (Michie, 1988). Meaningful ontologies
and knowledge bases could play a significant role in ensuring that stakeholders under-
stand and trust the conclusions that an Al system draws.

4 Commonsense Reasoning and Knowledge

There is a long history showing the relevance of commonsense reasoning and knowl-
edge (CSRK) to explanation. Certainly many pioneers of modern Al believed so and
argued that a major long-term goal of Al should include endowing computers with
standard commonsense reasoning capabilities. In “Programs with Common Sense”,
John McCarthy described 3 ways for Al to proceed: (McCarthy, 1968)

1. imitate the human central nervous system,
2. study human cognition or
3. “understand the common sense world in which people achieve their goals.”

While these were proposed as alternative approaches to Al, achieving robust Al is
likely to require a cross-disciplinary approach that includes all three.

A related goal has been to endow Al systems with natural language (NL) under-
standing and production. An early example of this is McCarthy’s conceptualization
of a smart advice taker that would have access to: “a fairly wide class of immediate
logical consequences of anything it is told and its previous knowledge.” McCarthy fur-
ther noted that this useful property, if designed well, would be expected to have much
in common with what makes us describe certain humans as “having common sense.”
He went on to use this idea to define CSRK — “We shall therefore say that a program
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Figure 1: The DARPA XAI Program (Gunning, 2018)

has common sense if it automatically deduces for itself a sufficiently wide class of im-
mediate consequences of anything it is told and what it already knows” (McCarthy,
1968).

Unfortunately, the early attempts to realize McCarthy’s conceptualization proved
to be brittle and did not capture deep knowledge. These attempts demonstrated that
the nature and scale of both explanation and CSRK were difficult. The amount of ev-
eryday knowledge needed for common tasks was considerably larger than expected.
Indeed, understanding even the simplest children’s story, which is a feat that children
master with what seems a natural process, is still a formidable problem. The Cyc
project attempted to encode a broad range of human commonsense knowledge as a
step toward understanding text, which would bootstrap further learning. But this type
of progress has been slow, and some believe that today this problem of scale can be
addressed in new ways such as ML. But ML methods do not include a built-in way
to provide machine generated explanations of what they “know.” For this reason, re-
search is exploring how common sense could assist in solving this problem. Particular
challenges include addressing the known brittleness of ML models given various adver-
sarial changes to input, and generalization to unseen situations when faced with limited
training data. Preliminary work suggests that CSRK could help compensate for limited
training data and make it easier to generate explanations, assuming that common sense
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Figure 2: Performance vs Explainability (Gunning, 2018)

is available in an easily available form.

There is evidence, for example, that state-change commonsense knowledge can
be used to compensate for limited training data when the text is describing a proce-
dure or sequence of discrete, inter-related events. Common sense aware ML models
make more sensible predictions despite limited training data when they can use the
prior knowledge of state-changes. For example, it is unlikely that a ball would be
destroyed in a basketball game scenario. The model injects common sense at the de-
coding phase by re-scoring the search space such that the probability mass is driven
away from unlikely situations. Adding common sense results in much better and more
robust performance.

The conclusion is that CSRK can assist in addressing some of the challenges of
explainability in general and of explainability of Al systems in particular.

5 The Role of Narrative

Narrative may be regarded as being complementary to commonsense reasoning and
knowledge. While CSRK provides the underlying reasoning and knowledge neces-
sary for explanation, the topic of narrative covers 1) the use of knowledge elements



in forming stories as sequences of events, and 2) the presentation of these stories in
dialog.

Narrative is a strategy for sense-making. The Project Narrative at Ohio State Uni-
versity states, “Narrative theory starts from the assumption that narrative is a basic hu-
man strategy for coming to terms with fundamental elements of our experience, such
as time, process, and change, and it proceeds from this assumption to study the distinc-
tive nature of narrative and its various structures, elements, uses, and effects” (Miller,
Howe, & Sonenberg, 2017).

As already noted above in the very definition of explanation, an explanation narra-
tive is an interactive conversation. People leverage their partial understandings of the
causal structure of the world “by knowing how to access additional explanatory knowl-
edge in other minds and by being particularly adept at using situational support to build
explanations on the fly in real time” (Keil, 2006).

Results from social science regarding how humans explain to each other can serve
as a useful starting point for explanation in artificial intelligence (Miller, 2018; Miller
et al., 2017). Key insights include:

e Explanations of social behavior rely on theories of an actor’s beliefs, desires,
intentions and traits, all of which should be considered when generating expla-
nation narratives.

e In addition to causal explanations, i.e., “Why P,” an explanation narrative should
also provide counterfactual answers, i.e., “Why P rather than Q?”

e The selection of such causes tends not to be comprehensive but rather identifies
a few causes considered to be adequate for the explanation.

o Similarly, the choices of the counterfactual answers tend also not to be compre-
hensive but rather need only be adequate. The use of counterfactual explanation
in narrative is a common part of conversation. Automated explanation should
be capable of arguing both in favor of an answer as well as against proposed
alternative answers.

e As interactive conversations, explanation narratives should abide by rules and
maxims of discourse, such as those identified by Grice as follows: (Grice, 1975)
— The Maxim of Quality
The Maxim of Quantity
— The Maxim of Relation

— The Maxim of Manner

Relating the conversational evaluation criteria above to the relevance, usefulness
and trustworthiness criteria previously noted for explanations can yield additional in-
sights. For example, the Maxim of Quantity suggests that an explanation should be
as extensive as necessary but no more so. Surprisingly, the trustworthiness criterion is
another one that also has this property. If humans trust a system too much, then they
will be unprepared for situations in which the system exhibits anomalous or dangerous
behavior (Rodriguez, Schaffer, O’Donovan, & Hollerer, 2019).



Many techniques have been developed for generating NL from knowledge and rea-
soning processes. It is commonly assumed that proofs are the “gold standard” for
explanation. However, in practice, proofs are not adequate as explanations, as we
remarked in Section 1 above. In most cases, one could generate a complete and rig-
orous proof from the published argument, but it is very difficult to accomplish this
and it is rarely done. In some cases, the claimed theorem turns out to be incorrect in
spite of having a thoroughly reviewed and published “proof.” Alternatively, Baclawski
has proposed that by taking explanation as the goal, one can develop fully complete
and rigorous proofs that could also be readable and convincing narratives (Baclawski,
2019b).

Narratives need not be limited to NL. One could also use visual techniques. They
are gaining maturity and could be used both for input from, and for output to, the
user. Combining NL and visual techniques could be an especially effective approach
to explainability.

Tiddi studied theories and models of explanation in a variety of disciplines to iden-
tify the minimal ‘story’ elements that define an explanation (Tiddi, d’Aquin, & Motta,
2015). The resulting Explanation Ontology Design Pattern is shown in Figure 3. In
this pattern, an explanation requires:

e An explanans (the explanation)
e An explanandum (what is being explained)
e A context (or situation) that relates the two

e Some theory or “a description that represents a set of assumptions for describing
something; usually general, scientific, philosophical, and commonsense theories
can be included here.”

e An agent producing the explanation

hasCondition some situation:Situation

\ SubPropertyChain:
hasExplanans o situation:hasSetting,

is subclass of hasExplanandum o situation:hasSetting

hasCondition situation:Situation

hasExplanans
hasExplanandum

dul:Agent dul:Theory

hasExplanans some part:Event and

-«
hasExplanandum some part:Event is subclass of

Explanation

dul:isConceptualizedBy isBasedOn situation:hasSetting

Figure 3: Explanation Ontology Design Pattern from (Tiddi et al., 2015)

Narrative can play a significant role in explanations that are intended for non-
specialists and for dialogs. While there is an extensive theory of narration, there are
few systems that automatically generate explanations as narratives. Ontologies could
be useful for solving this problem.
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6 Financial Explanations

The financial services industry is diverse, international and huge. Depending on how
it is defined, it globally represents a $10 to $20 trillion industry (in U.S. currency). It
is also rapidly evolving, with new investment vehicles and services constantly being
introduced. This industry is highly regulated, and governments are increasingly man-
dating that explanations for decisions must be provided to customers (which includes
both individuals and companies), to financial services partners, and to government reg-
ulators.

Consider the example of the credit industry, a significant subdomain of financial
services. In the U.S., the Fair Credit Reporting Act (FCRA) mandates that credit deci-
sions must be explained. For example, a customer whose application for a credit card
was denied has the right to know why. The credit card company might respond to a
request for an explanation with “Because you didn’t meet our criteria.” Needless to
say, the customer is likely to ask which criteria were not met, and a dialog will then be
necessary.

The following are some of many challenges involved in providing explanations in
the credit industry in particular, and the financial services industry in general:

e Context

— Who and Where: Must comply with Know Your Customer (KYC) regula-
tions. These regulations are intended to prevent illegal activities such as
money laundering and bribery.

— Who: Privacy must be respected.
— Who: Certain individuals are protected, such as veterans.

— When: There are temporal constraints, which are complicated by reporting
lag times.

— What: Product-specific credit scenarios affect the explanations.
e Data fusion and coordination

— Must be coordinated with credit reporting agencies (third party).

— Credit cards can have multiple authorized persons.

— Rule-based decision support software should be explainable but could have
been supplied by a different company.

e Narrative and dialog

— Most human understanding is contextual, and this needs to be taken into
account in presenting explanatory material.

— The presentation should be easily understandable to humans.

— Follow up inquiries for more detailed explanations should be supported.

e Explanations of the reasoning process
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— When decision making involves complex reasoning processes, the reason-
ing process itself may need to be explained.

— Higher-order concepts may need to be explained, such as rules and mathe-
matical constructs.

One approach to the challenges listed above would be for the financial services
industry to develop a common language. Although this industry is highly regulated,
it has no common industry language. The U.S. Treasury Office of Financial Research
stated, “The lack of a common industry language is a billion dollar problem.” One
reason why it is so difficult to develop such a language is that regulations are very
large and written in unstructured, natural language text. A single U.S. regulation, the
Federal Reserve System Final Rule 12 CFR Part 223, consists of 143 pages of text, and
the summary alone is 19 pages long. Another complication is that financial regulations
have long reference chains to other regulations.

Nevertheless, progress is being made with the development of the Financial Indus-
try Business Ontology (FIBO) (Bennett, 2019). The FIBO ontology has the potential
to contribute to a number of challenges from the list above. As a common language,
it would assist in data fusion and coordination. As a formal language, it can be used
for explaining reasoning processes. Finally, since FIBO uses natural language termi-
nology, narratives could be formulated to deal with human understanding and dialog.

7 Medical Explanations

The health care enterprise involves many different stakeholders — consumers, health
care professionals and providers, researchers, and insurers. Al is likely to play an
important role in many tasks that these stakeholders undertake. These include: im-
age diagnostics, medical decision making, prior authorization, drug design, nutrition
advisor, patient scheduling, etc. During the late 1970s and early 1980s, the pioneer-
ing knowledge-based expert systems (KBES) were in the domain of medical diagnosis
(e.g., MYCIN, INTERNIST-I). These systems relied on rule-based inferencing and
probabilistic knowledge networks. Unfortunately, as noted in Section 3, most of these
systems did not provide adequate explanations of their decisions. In 1993, Ford et al
surmised, “...the inadequate approach to explanation found in most expert systems can
be a significant impediment to user acceptance” (Ford et al., 1993).

Currently, neural networks (or deep neural networks [DNNs]) are playing a key
role in many medical applications that involves image interpretation and diagnosis.
Eric Topol’s paper and book provide numerous examples of such DNN-based systems
(Topol, 2019a, 2019b). However, the key problem with DNN-based systems is the lack
of explainability, which is very important for many reasons. Medical Al systems will be
accepted only if they are trusted by clinicians and other stakeholders, and explainability
is essential for this, since patient lives depend on medical decisions. There are also
laws and regulations giving patients the right to explanations about their diagnoses and
treatments. Explanations are more significant in some medical fields, such as mental
health (Kursuncu, Gaur, Thirunarayan, & Sheth, 2019).
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A combination of DNNs and knowledge graphs (ontologies) could potentially form
the basis for future Al systems in medicine. Achieving this requires solving several
problems as discussed in the Introduction above. One must first be able to interpret
the DNN. In other words, identify why an input goes to an output. Next one must
integrate the interpretation of the DNN with the knowledge graph so that one can trace
the reason for the input producing the output (Kursuncu et al., 2019). One must then
understand the concepts in the knowledge graph. Finally, a human readable narrative
should be generated as discussed in Section 5.

While there is general agreement on the steps required for the generation of expla-
nations given above, there are several possibilities for how knowledge graphs could be
used in the machine learning architecture. While there are many ML algorithms, most
are variations on supervised learning, i.e., first train the model on labeled training data,
then apply the model to new unlabeled data. Based on this architecture, there are at
least three ways in which knowledge graphs could be used for explainability:

1. Knowledge enhancement before a model is trained
2. Knowledge harnessing after the model is trained
3. Knowledge infusing while the model is employed

Kursuncu et al. have developed and evaluated all three of these roles for knowledge
graphs in the mental health domain using the same ontology for each role (Kursuncu
etal., 2019).

Other forms of learning, such as semi-supervised and unsupervised learning may
also have multiple roles for ontologies. The Global Health Intelligence project, which
involved data integration and interoperability for malaria monitoring and evaluation
in sub-Saharan Africa, integrated and analyzed large volumes of structured and un-
structured data, and processed the data to find patterns. The project also produced
explanatory and predictive models (Shaban-Nejad, 2019). In this case, each of the
steps, integration, analysis, pattern recognition and model development can make use
of ontologies prior to, during and following the step.

8 Findings

We now summarize the main findings of the Summit. The findings were organized into
groups that very roughly correspond to the phases of a system development project.
Ontologies can play important roles in achieving explainability throughout all devel-
opment phases. We begin in Section 8.1 with the reasons why a system should be able
to explain its functioning. This is followed by Section 8.2 which proposes what is nec-
essary for explainability. Section 8.3 discusses challenges for how explainability could
be achieved. Each challenge represents an opportunity for research on explainable
systems.

13



8.1 Rationale

As we have seen, systems that can explain themselves are difficult to develop. Ac-
cordingly, there must be a compelling rationale for allocating resources to support ex-
plainability. In this section we mention a few of the reasons why a system should be
explainable.

e Legal requirements. As discussed in Section 2, explainability is strongly
recommended by regulations such as the General Data Protection Regulation
(GDPR) (Recital 71 GDPR, 2018; Tiddi, 2019). While explainability is not yet
mandated in general, some domains already have legal requirements. Finan-
cial services have legal requirements for explainability (Bennett, 2019; Under-
wood, 2019). Forensics is another domain that effectively requires explainabil-
ity since forensic reports are intended to be used in legal proceedings (Srihari,
2019). Medical systems often have legal requirements for explainability, as well
as guidelines and protocols that must be followed. Explainability is also impor-
tant for systems to be trusted and accepted by users (Kursuncu et al., 2019).

e Trust. Even in domains that do not have requirements for explainability, the
need is still compelling. In many domains, Al is still a novelty and explanation
may be necessary to gain acceptance and trust by practitioners (Kursuncu et al.,
2019; Turano, 2019).

e Improve robustness. It is known that Al systems are fragile and can be easily
fooled (Ghorbani et al., 2019). Explanation may be able to help to improve
robustness and to deal with adversaries (Clancey, 2019; Tandon, 2019).

o Interoperability. One of the advantages of ontologies, especially when they
have been standardized, is the potential for improving interoperability and coor-
dination among systems. The need for this capability was seen in both financial
services and medical systems (Sections 6 and 7).

8.2 Requirements

Having made a case for systems to be explainable, the question then becomes what is
required. As discussed in Section 2 above, an explainable system should be able to
answer commonsense questions, especially “why” questions, but also “how” and “why
not” questions. The questions and answers should be in natural language, should be
expressed in an easily understandable narrative style, and should allow for interactivity
and following up (Berg-Cross & Hahmann, 2018; Clancey, 2019; Sowa, 2018; Sriram
& Sharma, 2018).

o Interdisciplinary. A common theme during the Summit sessions was that ex-
plainability is very likely to require cross-disciplinary teams from computer
science, cognitive science, linguistics, social science, and biological sciences.
Within computer science, techniques from many fields must be combined, in-
cluding classical logical (symbolic) Al, statistical (sub-symbolic) Al, NL pro-
cessing, NL generation, ontologies, and CSRK (Sriram & Sharma, 2018). Com-
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bining such disparate techniques so that provenance remains traceable is a sub-
stantial challenge.

e Ontologies. There was a general consensus among the invited speakers and par-
ticipants that ontology can be useful for explainability. Indeed, most claimed that
ontology was essential for explainability. While ontologies have been proposed
for explanation, for example, the Explanation Ontology Design Pattern (Tiddi et
al., 2015). While such patterns are useful, there does not appear to be a single
predominant role that ontologies play in explanation. An ontology could be in
the “background” for purposes such as commonsense reasoning (Berg-Cross &
Hahmann, 2018). On the other hand, an ontology could also be more explicitly
visible to end users as in financial services (Bennett, 2019; Underwood, 2019).
When this is the case, the ontology must itself be explainable (Bennett, 2019).
When an ML algorithm is being employed, there are many roles that an ontol-
ogy could play as discussed in Section 7 (Kursuncu et al., 2019; Shaban-Nejad,
2019). Some of these are background roles, while others are explicit and require
the ontology to be explained. In general, there is a need for more research on
ontology design patterns for explanations.

o Context. It was also generally agreed that context is important (Bennett, 2019;
Berg-Cross & Hahmann, 2018; Clancey, 2019; Sriram & Sharma, 2018; Un-
derwood, 2019). Indeed, as noted in Section 1, context is part of the definition
of explanation. Moreover, explanation may be regarded as being a part of the
context as well as depending on it. Specifically, explainability requires a “user
model” of interests and knowledge in order to have meaningful dialogs (Clancey,
2019). A more subtle aspect of the user model is the user’s language. This is not
just the natural language of the user but also the domain-specific jargon of the
user’s community.

e Quality. Finally, there is a need for evaluating the quality of explanations
(Baclawski, 2019a; Griininger, 2019). Quality includes not only subjective mea-
sures of explainability (such as user satisfaction surveys) but also whether the
explanations are verifiable and conform to standards.

8.3 Challenges and Opportunities

Explainability is a difficult research problem, but there was general agreement that it
will be possible to develop systems that can produce explanations that are as informa-
tive and useful as an explanation from a well-informed person. That said, there are
some serious challenges that represent opportunities for research.

e As discussed in Section 2, explainability should be an integral part of software
development, even to the extent of driving the development process. Adding
explainability later in the process can be less adequate and more expensive than
including it early in the process. This is a difficult problem because stakeholders
have different attitudes toward support for explanations.
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By the definition of explanation, it depends on context, both the system context
and the user context. Consequently, explainability will require solutions to many
of the problems that were found in the Ontology Summit 2018 (Baclawski et al.,
2018).

In the financial domain, regulations are very large, unstructured natural language
documents with long reference chains. Formalizing such regulations correctly
and efficiently is a barrier to automating explanations in this domain. A further
complication is that the constructs need not be first-order, making it difficult to
apply existing reasoning tools (Bennett, 2019).

As noted in Section 4, commonsense reasoning is a key enabler for a robust Al
explanation system (Berg-Cross & Hahmann, 2018; Tandon, 2019; Tiddi, 2019).
Unfortunately, while great progress has been made in this area, it remains a re-
search problem. Consequently, common sense is “perhaps the most significant
barrier” between the focus of Al applications today, and the human-like systems
we dream of (Berg-Cross & Hahmann, 2018).

One barrier for developing explainable systems that interact with humans on
everyday tasks is the lack of a common framework for modeling such tasks.
An ontology that we all share for representing and reasoning about the physical
world could contribute to solving this problem (Griininger, 2019).

While mathematical proofs can be useful for explainability, automated proofs
are not easy to understand by a non-specialist (Doran, 2018; Baclawski, 2019a;
Berg-Cross & Hahmann, 2018). There is a need to apply linguistic and narrative
theories to mathematical proofs to produce more easily understandable expla-
nations. However, expressions of proofs as narratives should be seamless and
unambiguous so as to avoid any confusion for machine interpretability.

Sharing and reusing insights from the social and cognitive sciences is a key en-
abler for developing explainable systems (Tiddi, 2019).

The Most Probable Explanation is a very promising approach for explainability
(Srihari, 2019).

Visual techniques are a promising approach to explanation, but automatically
generating explanatory visualizations that are integrated with narratives is chal-
lenging.

9 Conclusion

Automating explanations of complex systems today is largely handled in an unsys-
tematic manner, if it is handled at all. Modern Al systems are especially difficult to
explain, but they are not the only systems that lack adequate explainability. We found
that ontologies and context sensitivity can be important parts of an effective solution
to explainability. This conclusion was apparent in all of the Summit tracks, both in
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the general areas of commonsense reasoning and narrative and in the more specific
domains of explainable Al, financial services and medicine. While we listed many
potential approaches that are actively being pursued, much more research and develop-
ment is needed for systems to be adequately explainable.
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