
Use Cases for Evaluation of Machine Based
Situation Awareness

K. Baclawski∗, A. Chystiakova†, K. C. Gross†, D. Gawlick†

A. Ghoneimy† and Z. H. Liu†

∗Northeastern University, Boston, MA USA
†Oracle Corporation, Redwood City, CA USA

Abstract—Situation awareness (SA) is important both for
human decision making and for complex automated decision
making. The presumption is that improving the accuracy of SA
will lead to better decisions. While there has been significant
research on measuring the accuracy of human SA, there has
not been as much work on machine-based SA. Unlike humans,
complex systems have many levels of decision making that may
operate independently and may run at very different timescales.
The accuracy of SA for each decision making process, determined
in isolation, need not contribute to overall system performance.
Moreover, achieving more accurate SA may require devoting
resources that are disproportionate to the benefits. We propose
that one should focus on the net value of SA to the system rather
than simply on the accuracy. In this article, we present some
use cases for determining the value of machine-based SA. The
purpose is to illustrate how one can quantitatively evaluate SA
so that one can optimize important issues for automated decision
making processes such as system performance and stability.

Keywords—situation awareness; evaluation; use cases; control
theory; stability

I. INTRODUCTION

Situation awareness (SA) the perception of the elements
in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their
status in the near future [1]. Humans are constantly acquiring
and using SA in everyday activities. For example, they have
to judge and react to social situations, traffic situations, and a
variety of situations in their workplace. SA is especially im-
portant for complex decision making in high stress situations.
Loss of SA was the root cause of several high-profile disasters.

The oldest and most famous model of situation awareness
and decision making is Boyd’s observe-orient-decide-act loop
(OODA loop) [2]. The Boyd loop models human behavior
that is mostly performed unconsciously: humans observe and
interpret their environment using their senses and based on
their focus, they try to understand the meaning of their
observation and interpretation, they decide what should be
done, and they execute the decision. The observations are
biased by their interpretation and classifications. The decisions
are mostly based on experience and are often intuitive and
less reflective. For example, in traffic situations, and in many

industrial applications, there is often no time for a detailed
analysis.

Fig. 1. Endsley’s model of SA based on [1], [3]. Drawn by Dr. Peter Lankton,
May 2007

Endsley elaborated on the OODA loop model with the loop
shown in Figure 1. However, neither the OODA loop nor
Endley’s loop specify either the processes or the data involved
in SA and decision making [4, p. xiii].

Cognitive architectures are formal models of cognition that
are formalized sufficiently to be the basis for a computer
program. Example of cognitive architectures include Adaptive
Control of Thought - Rational (ACT-R) [5], [6], [7], [8]
and Soar [9]. These cognitive architectures have process and
data models, explicitly expressed in their implementations.
While cognitive architectures are machine based and could
be used for decision making tasks, their primary purpose is
refine theories of cognition. In ACT-R, for example, cognition
unfolds as a succession of production firings intended to match
the behavior of human cognition. In other words, it models
cognition (at least at the lowest level) as kind of feedback
loop. However, it does not appear that ACT-R is concerned
with whether their decision loop is either efficient or stable.
Indeed, doing so would detract from the purpose of modeling
human cognition as accurately as possible.

If sensors and computers are used we propose a differ-
ent model: KIDS with its ingest-classify-assess-resolve-enact

(ICARE) loop [10]. Sensors are used to measure raw data;
this data are ingested into a computer system. The computer
system stores the data for long term documentation and applies
models using the machine learning (ML) technology of choice.
The ML technology will improve and compact the data and
also identify abnormal conditions; this includes a distinction
between sensor and asset issues. While the data so far are
usable for computers, they are not usable for humans; there
are typically just far too many raw data elements. Therefore
KIDS creates a compact representation using domain specific
languages. This transformation results in the most likely classi-
fication(s), assessment(s), and resolutions(s) based on the most
similar cases (representing experience) and/or reasoning using
rules and/or models. In effect, KIDS provides the processes
and data structures that are missing from the Endsley model,
although only for machine SA, not human SA.

KIDS associates to each instance of an abnormal condi-
tions an object called KIDS instance; the underlying data
triggering the abnormal conditions are part of the instance.
KIDS instances can be related to each other using hierarchical
and/or graph models; e.g., a hospital stay is a collection of
many nested KIDS instances. These KIDS instances can be
accessed using domain specific languages (and dialects); they
represent the shared experience of a group of users. The access
can focus of an individual instance, on similar instances,
or on (complex) analytics. Accessing and adding new KIDS
instances - especially when new approaches are used - leads to
the new methodology of the evolution of the shared knowledge
and experience with minimal additional work.

Whether to use the Endsley model or KIDS depends on the
particular use case. The Endsley model is preferable when
there are few or no measurements and/or reliable process
and data models do not exist. KIDS is preferable in data
rich environments with complex correlations and the need for
provenance and explainability. In many cases, a combination
of both methods is beneficial. KIDS refines significantly data
gathering, data analysis, provenance as well as abnormal
condition detection. Once an abnormal condition has been
detected it very much follows the Endsley model. This ap-
proach enables KIDS to allow automated as well as human
decision making; since automated decisions can be explained
using domain specific languages.

While human SA is very similar to machine SA, there are
significant differences. When measuring human SA perfor-
mance, one would not normally use a financial performance
measure. Although such a measure is meaningful for human
SA, it is not socially acceptable when human lives are at stake.
The infamous “Pinto Memo” is an example [11]. In this memo,
it was computed that the cost of correcting a defect of the
Ford Pinto was 3 times the social cost of the burns suffered by
individuals as a result of the gas tank exploding. Unfortunately,
the memo failed to consider the cost to Ford of the negative
publicity that the memo caused when it was made public.

By contrast, for machine SA, a cost-benefit analysis is
usually the main measure of performance. If the cost of
achieving a better quality of SA is greater than the benefit
so that the net benefit is negative, then it would be more
beneficial to employ a lower quality SA whose cost and benefit
are both lower than the better quality SA but whose net benefit
is maximized. There are other differences as well. Machine
decision making processes can, in principle, manage far more
information than even a team of humans; such processes can
operate at a far more rapid rate, with much better response
time; and machines do not make the same kinds of mistakes
that humans do. On the other hand, machines are not as flexible
as humans, especially when confronted with new situations,
goals and kinds of data. For this reason, one would expect
that humans will continue to be “in the loop” at least at some
level, and the system must provide for this kind of interaction
[12]. However, machines are improving in this regard, and we
proposed an architecture for self-adaptation using flexible data
structures and processes [13].

Measurement of SA is a well studied area of research. The
book by Endsley and Garland [3], especially the articles [14],
[15] by Endsley, give an excellent survey of the state of the art
and current research issues. However, this work differs from
our own in several ways:

1) Existing SA measurement research deals almost exclu-
sively with human SA. To the extent that machine SA
is mentioned, it is subsidiary to human SA.

2) More importantly, measurement is not the same as eval-
uation. SA measurement is concerned with the accuracy
of SA. Evaluation of machine-based SA, by contrast, is
concerned with the net value of SA.

The purpose of this article is to explore some of the
ways that can be used for evaluating machine-based SA in
various contexts so that one can better understand the tradeoffs
involved in efforts to use SA to improve system performance
and stability.

We cover three use cases. In Section II, we consider
an example of a commonly occurring failure of SA that
has substantial costs for manufacturers of components. The
problem is that components can be incorrectly determined
to be faulty by a customer when, in fact, they function
correctly. In Section III, we discuss how independent decisions
in a chain of processes can result in instabilities and loss
of performance even when the individual decision making
processes are optimum and, in principle, have accurate SA
when each is considered on its own. The last use case, in
Section IV, discusses a scenario in which the overall system
has hierarchically nested decision making processes that occur
at different timescales. As with chains of processes, optimizing
decision making at one level may conflict with other levels.
We end the article with some conclusions and propose some

future work.

II. NO TROUBLE FOUND

The first use case is a problem known as No-Trouble-
Found (NTF). In the literature, it is also called No-Faults-
Found [16]. The NTF problem is that components used in
application areas, such as automobiles, electric utilities, and
manufacturing, have mechanisms for indicating component
failure. The failure is typically advertised with an alarm.
When an alarm is raised, the component may be replaced
at little or no cost under the terms of a warranty or service
contract. The component that raised the alarm is returned to the
supplier and tested in their laboratory. Remarkably, as much
as 25% to 70% of the time, the returned component operates
correctly when tested. The NTF rate depends on the particular
industry segment and product line. The cost of replacing NTF
components has been estimated as about $2B per year in the
industrial sectors of transportation, utilities and manufacturing.
Needless to say, there is a financial advantage for reducing the
NTF problem. Furthermore, the NTF problem may be regarded
as an example of a loss of SA, since the true status of the
component and the perception of its status are inconsistent.

Sun Microsystems performed in-depth root-cause analyses
of NTFs in electronic systems and found that the leading
causes of NTFs in electronic components are the following
[17]:

• Transient/Intermittent Faults
• Threshold Limits on Noisy Physical Variables
• Sensor Degradation Events
• Human Errors During Testing and Diagnosis

The first three of these causes occur at the customer side,
while the last cause is at the supplier side. This use case
will focus on the supplier side testing to avoid discarding a
component that is not faulty, but similar techniques could be
applied to the problem of evaluating SA for any of the causes.

On the supplier side, a returned component is tested in the
laboratory to determine whether the component is an NTF.
Such testing can be costly, so it is only useful if the savings
outweigh the costs. To make this more precise, suppose that
there are several laboratory tests of a component, T1,T2, . . . ,Tn,
with increasing costs C1 <C2 < .. . <Cn, For each test Ti, there
are three possible outcomes:

• the component is defective;
• the component is working properly; and
• the test cannot determine the status of the component.

Assume that we have empirically determined that the prob-
abilities of each of the three outcomes of the test Ti are pi,qi,

and ri where pi +qi + ri = 1 and that the tests are statistically
independent. If the value of the component is V , then the
average benefit of performing Ti by itself is bi = qiV because
there will be a gain of V with probability qi. The net benefit
of performing Ti is then the difference f (i) = bi−Ci. So if
only one test is to be performed, then one should select the
test Ti with the highest net benefit f (i).

If multiple tests can be performed then one may be able
to achieve a higher net benefit. An example of three tests
is shown in Figure 2, and the test sequence is described in
more detail below. Suppose that we perform the tests in the
order {i1, i2, . . . , in}, stopping when a test determines that the
component is either defective or working properly. Then the
first test is always performed, the second test is performed
only if the first test is indeterminate, and so on. The total net
benefit is then f (i1)+ ri1(f (i2)+ ri2(f (i3)+ . . .+ f (in))) or

f (i1, i2, . . . , in) =
j=n

∑
j=1

(
j−1

∏
k=1

rik) f (i j)

One can also write this formula recursively as follows:

f (i1, i2, . . . , in) = f (i1)+ ri−1 f (i2, . . . , in)

One can maximize the net benefit of performing a sequence
of tests by computing the maximum value of f (i1, i2, . . . , in)
over all possible sequences. If a single test can be performed
more than once, and the results are statistically independent,
then the sequences can include duplicate tests, and there will
be infinitely many sequences to consider.1 Another complica-
tion is that tests may not be statistically independent.

A sequence of three tests is illustrated in Figure 2. The
individual tests are performed as follows:

• Exercise the component using archived time series data.
• Collect and store the results of exercising the component.
• Analyze the results by classifying any anomalies in

the component output using statistical machine learning
techniques.

• Perform a statistical test to decide whether one of the
following has occurred for the component:

– True Failure
– True No Trouble Found
– Inconclusive

• The action to be performed is determined by the result
of the statistical test as follows:

– If True Failure, then send to scrap/recycling.
– If True NTF, then return the component to the stock

in the warehouse.
– If Inconclusive, then perform the next test.

An example of a specific test sequence for detecting NTF
components that is used in industry is given in [10].

1Indeed, the sequence that maximizes the net benefit can be infinite.

Fig. 2. Sequential Hypothesis Flowchart for Electronic Systems and Compo-
nents Evaluated as “Suspect NTFs” from [18]

III. BULLWHIP EFFECT

The bullwhip or Forrester effect is the phenomenon in busi-
ness economics in which forecasts overcompensate in response
to shifts in demand, resulting in increasing swings in supply
[19]. While this phenomenon can occur in a simple supply
and demand situation, it becomes much more pronounced
when there are multiple linked supply/demand links forming a
supply chain. The reasons for this phenomenon are complex,
and it is often attributed to imperfect information by the
participants. However, it is known that even when people
have perfect information, they have difficulty achieving the
theoretical optimum performance of the supply chain.

For automated decision making of a linked chain of services,
the bullwhip effect can be mitigated, in principle, by ensuring
that all of the steps in the service chain are fully informed.
Unfortunately, the components of a service chain may not
allow for sharing of information and control. Modern software
engineering emphasizes separation of concerns, low coupling
and modularity to achieve correct operation, which is exactly
the kind of situation in which bullwhip effects may occur. For
example, if a file server detects what appears to be a trend,
it may retrieve data in anticipation of future requests. If these
future requests do not occur, the effort was wasted, and the
file server may change to a mode where it does not anticipate
future requests, which causes a loss of responsiveness. Even-
tually the file server returns to the previous mode, and the
situation can repeat. If the file server and the program using
the file server both had full knowledge and control over each
other, then one could, in theory, mitigate this phenomenon.
However, this would be a serious violation of modern software
engineering practices.

Linked chains of services are becoming much more popular.
A common style for such linked chains is the service-oriented
architecture (SOA). This is a style of software design in which
application components communicate over a network using

standard protocols. The Open Group (www.opengroup.org) is
a standards body that develops and encourages standards for
SOA. When the SOA services are very small and the protocols
lightweight, the style is called a microservices architecture
[20]. As these new architectural styles become more popular,
bullwhip effects may also become more common. Since the
services are, by design, independently developed, SA for the
many services can become inconsistent with one another. Good
SA in some of the services could easily be overwhelmed by
poor SA in others.

Another issue is the need for ensuring that the service chain
is stable in the sense of control theory.2 A system is stable if
the effect of a small perturbation will eventually dissipate.
A system is unstable if a small perturbation will cause the
system to oscillate forever without dissipating or to exhibit
increasingly large deviations from normal behavior. One could
have stability even if a small perturbation causes large transient
effects as long as the effects eventually disappear. Accordingly,
in practice, it is also necessary to control transient effects.
Unfortunately, modern software engineering practices seldom
consider issues such as stability or transient effects. The SOA
architecture could make this even worse because of the large
number of services that must coordinate with each other.

A commonly suggested approach for preventing bullwhip
effects in supply chains is to share information between the
services in order to synchronize them [21]. This is an effective
technique for supply chains, although this can be a substantial
effort as typically the supply chain organizations will need to
be restructured and individuals will be re-skilled [22].

Using this same approach for SOA process chains would
generally require substantial amounts of reprogramming be-
cause the services would not only need to provide internal
information about their decision making processes but would
also need to make use of the new shared information from
other services. In addition, the services would have to give
up some of their autonomy. So while the synchronization
approach is likely to be effective at reducing bullwhip and
other coordination problems, it is not very realistic, in practice.
A more realistic approach is to introduce controllers to ensure
stability.

To show how this can be done, we analyze a chain of
services. We presume that time is discrete, with each unit of
time representing the time for a service to fulfill each request.
Because time is discrete, the z-transform can be used to
analyze the system [23]. We model each service approximately
as a Proportional-Integral (PI) controller, where the input and
output are changes to service levels3. The transfer function for

2To be more precise, one must ensure that the most relevant notions of
stability hold for the system, since there are many stability concepts in control
theory.

3The most general controller architecture in current use is the PID con-
troller. For simplicity, we have omitted the Derivative term.

a PI controller is (KP+
KIz
z−1)(

1
z−1), where KP is the coefficient

of proportional control and KI is the coefficient of integral
control. One can regard KP as the amount of direct response
to the requested change in service level. The coefficient KI is
a response to the history of changes in the past. If a service
responds exactly to the requested change, then KP = 1. If a
service does not “remember” the past, then KI = 0.

Of course, an actual service will not be exactly equivalent
to a PI controller. To deal with the behavior of a service that
is not simply a controller, we introduce a factor G which
bounds the additional behavior. The resulting model is then
a form of worst case analysis which will be valid so long as
the additional behavior remains bounded within the specified
factor.

The transfer function for a chain of n services is the product

F(z) =
n

∏
i=1

(K(i)
P +

K(i)
I z

z−1
)(

1
z−1

)Gi

The closed-loop transfer function is then

H(z) =
F(z)

1+F(z)
=

R(z)
(z−1)2n +R(z)

where

R(z) =
n

∏
i=1

((K(i)
P +K(i)

I)z−K(i)
P)Gi

The system will be stable if the (complex) poles of H(z) are
inside the unit circle in the complex plane. However, even if
all poles are inside the unit circle, as poles get closer to the
unit circle, the systems will take longer to “settle down” after
a disturbance. If a pole is on or outside the unit circle, then
the system is unstable, and bullwhip effects can occur.

If each service simply responds independently to its re-
quests, then it is likely that the system will be unstable. To
prevent instability, one must “tune” the control coefficients
so that the poles are inside the unit circle. For example, one
can “throttle” the response of a service to reduce KP for that
service. The service itself might have a parameter setting for
this purpose; but if it does not, then the service could be
wrapped in a scheduler module that modifies G for the service.

The constant G is only an estimated bound. If the actual
service exceeds the bound, then instability could occur. The
cost analysis would estimate the probability P(G) of the bound
G being exceeded, possibly from historical records; as well as
the cost CI associated with instability; and the cost CT (G) of
throttling the service as a function of G. The total cost is then
P(G)CI +CT (G), and one can choose G so as to minimize
the total cost.

The bullwhip effect for supply chains has been analyzed
quantitatively using proportional controllers, although not with
z-transforms, in [21], where it was mentioned that several

studies show that order rate stability tends to improve for
proper tuning of the proportional controllers. So it appears
that even in economics it would be useful to use control theory
techniques such as the ones we developed above.

Fig. 3. Self-Controlling Software Model from [24]

The Self-Controlling Software Model (SCSM) organizes the
various modules of a system so that it can automatically tune
control coefficients to ensure desirable characteristics such
as stability. SCSM can also restructure the system to adapt
to changing circumstances [24]. The architecture of SCSM
consists of three loops as shown in Figure 3. These loops
operate at different rates.

1) The feedback loop is the fastest and usually simplest
loop. It focuses on rapid responses. As a result, it gen-
erally has relatively simple control algorithms that apply
control parameters to feedback from the Quality-of-
Service subsystem. This would most likely be the level
at which the process loop of a cognitive architecture
such as ACT-R would run.

2) The adaptation loop is concerned with ensuring that
the feedback loop is running at an appropriate perfor-
mance level. It modifies the process parameters of the
feedback loop when the Evaluator determines that the
performance is not adequate or that the performance is
deteriorating. However, this loop would not change the
structure of the system. This loop is especially important
in the case of the bullwhip effect as discussed above.

3) The reconfiguration loop is available for more drastic
and costlier adaptations. This generally involves making
structural changes to the system. Modifying the indi-
vidual modules in a linked chain of services may be
necessary for dealing with this effect. For example, it
might be necessary to add scheduler modules to throttle
services to help ensure stability.

A combination of SCSM and KIDS for self-adaptive situation
management has been developed in [13].

IV. CLOUD SERVICES

Cloud computing is a popular technology for sharing com-
puting resources that is reminiscent of a public utility. When
a company provides its own computing resources, it must
not only purchase the resources but it must also provide for
the personnel and infrastructure necessary for running the
computing resources. To ensure that the company has adequate
resources it must provision sufficient resources to handle the
worst case demands. The worst case might not even be known
to the company which can result in inadequate resources at
peak times. On the other hand, if peak demand is known, the
computing resources will be underutilized nearly all of the
time.

To mitigate these problems, large technology-oriented
companies organize their resources using cloud computing.
Smaller companies and companies that are not concerned with
computing technology will use the services of a cloud com-
pany. A cloud company will generally have a large number of
clients around the world. As a result, fluctuations in demand by
the various clients will tend to cancel one another statistically.
In addition, the cloud company can afford to have trained staff
available continuously, which may not be cost effective for the
client companies.

When a client company contracts for services with a
cloud company, it signs a service level agreement (SLA) that
specifies the minimum level of computing service that the
cloud company is required to provide to the client. An SLA
will generally specify penalties that the cloud company must
pay the client if an SLA is violated. Consequently, cloud
companies have a financial incentive to ensure conformance
to all SLAs. For this reason, cloud companies continuously
monitor performance metrics to detect SLA violations as soon
as they occur so that their impact can be minimized and
to predict the possibility of an impending SLA violation so
that it can be avoided. In other words, cloud companies must
maintain situation awareness. While this kind of SA could be
done by humans, it is far more efficient and responsive to
automate it as much as possible.

While client requirements are, in principle, specified by
their SLA, in practice the actual resource usage is much
lower. There are strong financial incentives for a cloud service
company to plan the allocation of resources so as to mini-
mize the difference between provisioned and used resource
capacity. In other words, the company wants to ensure that the
available resources satisfies the needs of the clients with no
SLA violations, while also minimizing the cost of hardware
installation and support. Unfortunately, capacity planning is
difficult because the behavior of client programs are constantly
changing as a result of business needs, such as introducing or
phasing out products, sales campaigns, software upgrades, and
process migration. As a result, the cloud becomes a stochastic

system with unpredictable changes.

Because of the unpredictable nature of client behavior,
instabilities such at the bullwhip effect in Section III have
been observed for cloud services. Moreover, the instabilities
for cloud services are much more complicated because there
are many classes of resources to be managed, including:
processor time, memory, network bandwidth, storage, and
standard services such as database servers. The techniques
of Section III can be generalized to multiple resources us-
ing linear algebra (matrix) methods [25]. This is known as
“multivariable feedback control.” The transfer function T (z)
of the closed-loop system is now a matrix function. If there is
a pole of the determinant det(T (z)) that is on or outside the
unit circle, then the system is unstable. However, the absence
of such a pole does not guarantee stability due to cancellation
effects that cannot occur in the one-variable case. Nevertheless,
there are more sophisticated criteria that can guarantee stability
[25].

Another complication of cloud services is that the resources
that must be allocated are often arranged in a hierarchy with
different levels being allocated at different timescales. For
example, compute services consist of physical machines, each
of which runs a collection of virtual machines; and each virtual
machine runs a collection of threads. In addition, the physical
machines may be organized into several levels of groups of
machines.

A further complication for dealing with issues such as
bullwhip effects in cloud services is that the providers have
no legal right to examine or to control any of the internals of
client software. The key to the predictive diagnosis solutions
lies in the representation of a relatively high-level state model
of the system that is amenable to estimation and update of the
states from low-level events and measurements [26]. The state
models characterize the normal operation of the client software
and forms the baseline for detecting anomalies. In effect, this is
what scientists do when they employ the scientific method. A
model of a system is constructed by observing the system. The
model is then used to predict future behavior. If subsequent
behavior does not fall within the range of normal behavior for
the model, then it has been falsified, and a new model must
be constructed, usually by modifying the old one.

Having found a model for the client software, one can
then apply the techniques of Section III, generalized to the
multivariable case, as discussed above. A machine learning
technique such as neural networks or MSET [27] can be
employed to monitor the client software to determine whether
the model is still valid. If the model is no longer valid, then
either a new model can be developed or, in more extreme
cases, the system can be restructured.

V. CONCLUSION

In this article we examined the evaluation of machine based
SA, contrasting it with the more traditional human SA. We
did this by presenting three use cases. Section II dealt with
the NTF problem, although the formalism developed in this
section would apply to any collection of independent tests of
a component.

In Section III we considered a number of effects that can
arise when independent software components interact with one
another. Because the components cannot directly access or
control each other, the system can lose SA. The interaction can
be between two or more components operating concurrently
or between a component at one time and the same component
at a later time, as in a loop. One can deal with these problems
by employing methods from control theory.

We ended in Section IV with the example of cloud services.
This is a more extreme example of the situation in Section III.
In this case, the cloud service must provide a variety of
resources to the clients, even though it not only has no access
to or control of a client program, but it also does not even know
what purpose the client program might have. To deal with this,
the cloud server should construct a high-level empirical model
of the client program by observing its behavior. Then use this
model to predict its future behavior.

VI. ACKNOWLEDGMENTS

We wish to acknowledge the continuing support of Oracle.

REFERENCES

[1] M. Endsley, “Measurement of situation awareness in dynamic systems,”
Human Factors, vol. 37, no. 1, pp. 65–84, 1995.

[2] J. Boyd, “Destruction and creation,” U.S. Army Command and Gen-
eral Staff College, Tech. Rep., September 3 1976, Available at
http://bit.ly/1aAje2.

[3] M. Endsley and D. Garland, Situation Awareness, Analysis and Mea-
surement. Mahwah, NJ: Lawrence Erlbaum Associates, 2000.

[4] S. Banbury and S. Tremblay, A cognitive approach to situation aware-
ness: Theory and application. Aldershot, UK: Ashgate Publishing,
2004.

[5] J. Anderson and C. Lebiere, “A connectionist implementation of the
ACT-R production system,” in Proceedings of the Fifteenth Annual
Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence
Erlbaum Associates, 1993, pp. 635–640.

[6] ——, The Atomic Components of Thought. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1998.

[7] J. Anderson, D. Bothell, M. Byrne, S. Douglass, C. Lebiere, and Y. Qin,
“An integrated theory of the mind,” Psychological Review, vol. 111,
no. 4, pp. 1036–1060, 2004.

[8] J. Anderson, How can the human mind occur in the physical universe?
New York, NY: Oxford University Press, 2007.

[9] J. Laird, The Soar Cognitive Architecture. MIT Press, 2012.
[10] K. Baclawski, E. Chan, D. Gawlick, A. Ghoneimy, K. Gross, Z. Liu, and

X. Zhang, “Framework for ontology-driven decision making,” Applied
Ontology, vol. 12, no. 3-4, pp. 245–273, 2017.

[11] E. Grush and C. Saundy, “Fatalities associated with crash induced
fuel leakage and fires (report),” Ford Environmental and Safety En-
gineering, Dearborn, Michigan USA, Tech. Rep., 1973, Available at
http://bit.ly/2JLYIVE.

[12] K. Gross, K. Baclawski, E. Chan, D. Gawlick, A. Ghoneimy, and
Z. Liu, “A supervisory control loop with prognostics for human-in-the-
loop decision support and control applications,” in IEEE Conference on
Cognitive and Computational Aspects of Situation Management, 2017,
Available at http://bit.ly/2fPlG45.

[13] K. Baclawski, K. Gross, E. Chan, D. Gawlick, A. Ghoneimy, and Z. Liu,
“Self-adaptive dynamic decision making processes,” in IEEE Conference
on Cognitive and Computational Aspects of Situation Management,
2017, Available at http://bit.ly/2fOG9G2.

[14] M. Endsley, “Theoretical underpinnings of situation awareness: A
critical review,” in Situation Awareness Analysis and Measurement,
M. Endsley and D. Garland, Eds. Mahwah, NJ: Lawrence Erlbaum
Associates, 2000, Available at http://bit.ly/2IRRe24.

[15] ——, “Direct measurement of situation awareness: Validity and use of
SAGAT,” in Situation Awareness Analysis and Measurement, M. Endsley
and D. Garland, Eds. Mahwah, NJ: Lawrence Erlbaum Associates,
2000, Available at http://bit.ly/2UCtl5k.

[16] “Big Trouble with “No Trouble Found” Returns: Confronting
the High Cost of Customer Returns,” 2016, Available at
http://bit.ly/2vO5QZD.

[17] K. Gross and K. Whisnant, “Process for resolving “no trouble found”
server products,” October 27 2009, united States Patent No. 7,610,173
Assigned to Sun Microsystems, Santa Clara, CA.

[18] E. Chan and K. Baclawski, “JVM seasonal load trending,” Oracle, Tech.
Rep., 2016.

[19] J. Forrester, Industrial Dynamics. Cambridge, MA: MIT Press, 1961.
[20] L. Chen, “Microservices: Architecting for continuous delivery and

devops,” in The IEEE International Conference on Software Architecture
(ICSA 2018), 2018.

[21] E. Ciancimino, S. Cannella, M. Bruccoleri, and J. Framinan, “On the
bullwhip avoidance phase: The synchronised supply chain,” European
Journal of Operational Research, vol. 221, pp. 49–63, 2012.

[22] D. Anderson and H. Lee, “Synchronized supply chains: the new
frontier,” in Achieving supply chain excellence through technology,
D. Anderson, Ed. San Francisco: Montgomery Research, 1999, pp.
112–121.

[23] M. Hazewinkel, “Z-transform,” in Encyclopedia of Mathematics.
Springer Science+Business Media B.V. / Kluwer Academic Publishers,
2001, Available at http://bit.ly/2Xe5BWd.

[24] M. Kokar, K. Baclawski, and Y. Eracar, “Control theory-based founda-
tions of self-controlling software,” IEEE Intelligent Systems and their
Applications, vol. 14, no. 3, pp. 37–45, 1999.

[25] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and design. John Wiley and Sons, August 29 2001.

[26] E. Chan, D. Gawlick, A. Ghoneimy, and Z. Liu, “Situation aware
computing for Big Data,” in Workshop on Semantics for Big Data on the
Internet of Things (SemBIoT 2014), 2014 IEEE International Conference
on Big Data, Washington DC, October 27–30 2014.

[27] K. Gross, K. Whisnant, and A. Urmanov, “Prognostics of electronic
components: Health monitoring, failure prediction, time to failure,” in
Proc. New Challenges in Aerospace Technology and Maintenance Conf.
2006, Suntec City, Singapore, Feb 2006.

