ICOM: A Framework for Integrated
Collaborative Work Environments

Kenneth Baclawski', Eric Chan? Laura Dragan®, Patrick Durusau®, Deirdre
Lee3, Peter Yim®, and Yuwang Yin!

! Northeastern University, Boston, MA 02115, USA,
kenb@ccs.neu.edu, ywang.yin@gmail.com,
http://www.ccs.neu.edu/home/kenb
2 QOracle Corporation, Redwood Shores, CA 94065, USA,
eric.s.chan@oracle.com
3 Digital Enterprise Research Institute, Galway, Ireland,
firstname.lastname@deri.org
4 Consultant,
patrick@durusau.net,
http://tm.durusau.net
® CIM Engineering, Inc. (“CIM3”), San Mateo, CA 94402, USA,
peter.yim@cim3. com,
http://ontolog.cim3.net/cgi-bin/wiki.pl?PeterYim

Abstract. Collaboration is an important activity that is increasingly
using technology to improve the productivity of the participants. The
Integrated Collaboration Object Model (ICOM) is a proposed OASIS
standard for interoperation among collaboration services. ICOM is in-
tended to be a framework for integrating a broad range of domain models
for collaboration environments. The intention is to encourage indepen-
dent software vendors and open source communities to create common
collaboration clients that interoperate with integrated collaboration plat-
forms and standalone collaboration services across enterprise boundaries.
This paper provides an overview of ICOM that covers the high-level con-
cepts, directory, space, access control, metadata, content management,
and unified message models. ICOM is represented in several formats: the
Java Persistence API, XML Schema, RDF and OWL. We also describe
an example application based on ICOM.

Keywords: JPA, collaborative work environments, Semantic Web

1 Introduction

The Integrated Collaboration Object Model (ICOM) for Interoperable Collab-
oration Services defines a framework for integrating a broad range of domain
models for collaboration activities in an integrated and interoperable collabora-
tive work environment. The framework is not intended to prescribe how appli-
cations or services conforming to its model implement, store, or transport the



data for objects. It is intended as a basis for integrating a broad range of col-
laboration objects to enable seamless transitions across collaboration activities.
This enables applications to maintain a complete thread of conversations across
multiple collaboration activities. The model integrates a broad range of collab-
oration activities, by encompassing and improving on a range of models which
are part of existing standards and technologies. The model is modular to allow
extensibility. The fundamental concepts, metadata concepts, and their relations
are included in the core part of the model, while the specific concepts and rela-
tions for each area of collaboration activities are defined in separate extension
modules.

In the next section, we define the ICOM Core model. It defines the classes
that bring together the model of directory management, identity management,
and content management in a framework with a common access control model
and metadata model. We continue with the description of the extension modules,
which extend the core to define the specialized models for different collabora-
tion activities. The range of collaboration models include content sharing and
collaboration, asynchronous communication, instant communication, presence
awareness, moderated group discussion, time management, coordination, etc.
The core defines three distinctive branches of concepts, which complement each
other: Artifact, Subject, and Scope.

The Subject and Artifact branches support separation of concerns for user
administration and content management. The Subject branch includes the model
of actors, groups, and roles. These concepts typically appear as the subject in
the (subject, privilege, object) triples of an access control model. The Artifact
branch includes the model of content and metadata produced by actors.

The Scope branch defines the model of communities and spaces that contain
subjects and artifacts. Communities and spaces join the subjects and artifacts
in a role-based access control model where a role is assigned to an actor in a
specific scope. Thus Scope, Subject, and Artifact form a framework for applica-
tions to integrate and interoperate with directory, identity management, content
management, and collaboration services.

The model specified in ICOM is based on existing standards and technologies.
ICOM core model encompasses LDAP Directory Information Models [1]. The
extension modules integrate models from Content Management Interoperabil-
ity Services [2], Java Content Repository API [3], Web Distributed Authoring
and Versioning (WebDAV) [4], Internet Message Access Protocol (IMAP) [5],
Simple Mail Transfer Protocol (SMTP) [6], Extensible Messaging and Presence
Protocol (XMPP) [7], XMPP Instant Messaging and Presence [8], vCard MIME
Directory Profile [9], Internet Calendaring and Scheduling Core Object Specifi-
cation (iCalendar) [10], and Calendaring Extensions to WebDAV (CalDAV) [11].
ICOM is open for extensions with additional domain models to enable seamless
integration with business processes and social networks: for example in process
integration domain which includes Business Process Model and Notation [12],
Web Services Business Process Execution Language [13], WS-BPEL Extension
for People [14], and Web Services for Human Task [15]; in social networking do-



main, which includes Friend of a Friend (FOAF) [16], Semantically-Interlinked
Online Communities (SIOC) [17], Open Social®, and Facebook Platform Open
Graph”.

ICOM uses the Content Management Interoperability Services (CMIS) [2]
grammar to define classes and properties.

The OASIS ICOM TC Wiki® provides supplemental information, including
overview, primer, extensions, use cases, and mappings to various standards and
proprietary data models. The integrated model can be the foundation for defin-
ing the application programming interfaces (API) for integrated collaboration
applications to interoperate with collaboration services. A service provider inter-
face (SPI) can be specified to support interchangeable and interoperable services
that conform to the ICOM application framework. ICOM does not prescribe how
applications or services conforming to its model implement, store, or transport
the data for objects.

ICOM is represented in several formats: the Java Persistence API, XML
Schema, RDF and OWL. The UML and XML Schema are derived from the Java
classes, while the other specifications are directly derived from the authoritative
specification.

2 ICOM Modular and Extensible Framework

ICOM specifies a set of concepts in a collaboration environment, in terms of
class and property definitions. An ICOM object may be composed of informa-
tion from multiple repositories or collaboration services. All objects in the ICOM
framework must be instances of at least one class. The class and property def-
initions correspond to the UML meta-model, which is an OMG Meta Object
Facility (MOF) M2-model. The UML diagrams for ICOM were generated from
Java classes, which were directly translated from the authoritative ICOM spec-
ification. Some of these diagrams are shown below. The full set of UML class
diagrams is in [18].

2.1 ICOM Core

The ICOM Core model has three branches in its class hierarchy: Scope, Subject,
and Artifact. The Scope branch includes the model of communities and spaces
which are containers of subjects and artifacts. This branch is concerned with
directory management, providing hierarchical classified listings of Role, Group,
and Actor for administration, search and indexing, and uniform reference. Com-
munity and space list the resources as directory entries [1]. Although spaces
contain both subjects and artifacts, the membership of subjects in a space is ad-
ministered separately from management of artifacts in the space. Discretionary

5 http://opensocial.org
" https://developers.facebook.com/docs/opengraph
8 https://wiki.oasis-open.org/icom



Tdentifisble

RelabonshipBondable
L4 Scope

EoS

L4 community L4 space

Fig. 1. The Main Branches of the ICOM Core Model

access control (DAC) and role-based access control (RBAC) policies are defined
in terms of the subjects from the directory.

The Subject branch includes the model of actors, groups, and roles. This
branch is concerned with the identity of actors in collaboration. The Artifact
branch includes the model of folder, heterogeneous folder, and content produced
by actors.

The Core model also defines the Metadata and Access Control models in
separate namespaces. The Metadata is concerned with annotations. The Access
Control defines the discretionary access control (DAC) model for entity-level
granularity and role-based access control (RBAC) model for scope-level granu-
larity.

The Subject and Artifact branches support the separation of concerns of
user administration and content management. Typically subjects and artifacts
are joined in the (subject, privilege, artifact) triples of the access control model.
Some of the triples are derived from the scopes of the role assignments and the
artifacts contained by the scopes.

Figure 1 depicts the top-level abstract classes forming the main branch and
the Scope, Subject, and Artifact classes that represent the roots of the three
major sub-branches of the ICOM class hierarchy. To deal with the fact that
some programming languages, such as Java, do not support multiple inheritance,
the model defines two types of classes: ordinary and mixin. The mixin classes
are represented in Java as interfaces rather than classes. The mixin classes are
shown as circles rather than rectangles in the class diagram. It also shows the
core classes in the Scope, Subject, and Artifact branches. It only shows the



iz o b= =
L& AccessControlList 3 ity ]
accessCantrollist] w_ i Rofgntsl
s=narme: String
E%creationDate:Date =
TzlastModificationDate: Date Owner
P ety Sl
\ el attachedMarker | =8 e S__L.'b]?_Ct
L atarker o+ ¢ Actor
markedEntity IastModiFiedByl—
L . ’
categoryApplication tagAppIicationI’—

0.* i
o.* appliedBy
B attachedEntity attachedEntity BRI

L_é CategoryApplication L_é Tagapplication

Fig. 2. ICOM Entity Classes

subclass relationships, not the attributes or the associations. Figure 2 depicts
the Entity class in more detail, showing both its attributes and associations with
other classes.

2.2 ICOM Extensions

Each ICOM extension module defines a model of a collaboration activity. The
specification includes models for content creation, communication, coordination,
discussion forum, and conference. Most of the extension modules in this section
introduce specialized subclasses of Artifact and Folder of Artifact Branch. In
addition to the extension modules described here, the ICOM framework allows
additional extension modules. For example, applications can adopt a model for
the CMIS Policy base type as a new extension module, which can be used to
integrate with BPMN or BPEL processes outside the ICOM domain. An ICOM
space can provide a durable context for continuity of conversations and activi-
ties related to a business process type or process instance. Some new extension
modules may import the models from related standards.

ICOM defines containers that provide contexts and structures for specific
areas of collaborative activities. For example, a Space is a container that con-
tains HeterogeneousFolder, AddressBook, Calendar, TaskList, Forum, and Con-
ference. These subcontainers are briefly described below in the corresponding
extension modules. HeterogeneousFolder (defined in Core) is a general purpose
container that can list any type of artifacts, and therefore, can serve as a li-
brary of documents and wiki pages to support content sharing and co-creation,



an inbox or outbox for communication, or a trash folder to archive all types of
artifacts deleted from a space.

The following modules are specified as extension modules of ICOM:

Content module defines classes for Content, MultiContent, and SimpleCon-
tent. Content represents a piece of data in a document or message. The
module uses the Composite design pattern to form objects. The module is
referenced by other extension modules, like the Document module and the
Message module.

Document module defines Document, WikiPage, and a model for version con-
trol. A document can contain a composite content. Documents are typically
contained by heterogeneous folders.

Message module defines Messages like emails or instant message, and related
classes. A message can contain a composite content. Messages are typically
contained by heterogeneous folders.

Presence module defines Presence, Activity, and ContactMethod. Presence
represents a watchable state of an actor. Presence state is derived using an
actor’s subscriptions.

AddressBook module defines AddressBook and PersonContact. AddressBook
is a specialized container to manage contact or personal information, such
as addresses, phone numbers, birthdays, anniversaries, and other entries. A
person contact can reference a person in an ICOM community as well as
information about a person who may not be in any ICOM community.

Calendar module defines Calendar, Occurrence, and OccurrenceSeries. Cal-
endar is a specialized container to support time management. Occurrence
artifacts are used to resolve the free-busy times of participants for schedul-
ing of meetings and booking of resources.

FreeBusy module defines the FreeBusy class. FreeBusy is a view derived from
occurrences in a calendar or a set of calendars using an actor’s privileges.

TaskList module defines TaskList and Task. TaskList is a specialized con-
tainer to support task coordination. Tasks are used to coordinate the assign-
ment and progress of work.

Forum module defines Forum, Topic, Announcement, and DiscussionMessage.
Topics, announcements, and discussions are used for threaded conversations.
Moderators of a forum can prune, merge, or fork the discussion threads.
Forum is a specialized container to support Topic sub-containers and An-
nouncement sub-containers for time-sensitive communication.

Conference module defines Conference and related classes. Conference is a
specialized container that provides a durable context for real-time interac-
tions. A conference can contain visual, audio, and chat transcripts of the
conference sessions. It also contains the current status, conference settings,
past sessions, active session, and activity logs.



3 Features of the Model

3.1 Persistence

Maintaining data persistently is a necessity for nearly all software applications.
Since the predominant storage technology is the relational model but the pre-
dominant software languages are object-oriented, it is necessary to have an
object-relational mapping. An increasing number of applications are using the
Java Persistence API (JPA) for this task. Accordingly, one of the first mappings
for ICOM was a mapping to JPA. This mapping consists of Java annotations
added to the POJO classes. The java.net OpenICOM project [19] is incubating
a JPA framework which manages ICOM POJO objects. OpenICOM framework
emulates the JPA programming model but is not limited to object-relational
mapping. It supports pluggable data access connectors that can be implemented
using proprietary APIs for collaboration platforms, standard protocols such as
LDAP, WebDAV, IMAP, SMTP, XMPP, CalDAV, etc., or NoSQL databases.

The ICOM specification defines a class called Entity which is the superclass
of any class that supports a persistent identifier, a change token for optimistic
locking, and an access control list. The object identifier and change token are
annotated, respectively, by javax.persistence.Id and javax.persistence.Version,
matching the ICOM concept of Entity with the JPA concept of Entity. ICOM
Entity has another fundamental dimension for access control list, which together
with JPA Id and Version, defines a unit of persistent information for concurrency
and access control. The generation of object identifiers is implementation depen-
dent; however, ICOM recommends that the object identifiers should be globally
unique to support permanent references to the entities that may migrate amongst
interoperable ICOM repositories. An object identifier is read-only (immutable)
once it is assigned and should never be duplicated or re-used for more than
one object. The UML diagram in Figure 2 depicts the Entity class, properties,
and cardinality of the properties. Entity’s properties include name, created by,
creation date, last modified by, last modification date, owner, parent, attached
markers, category applications, tag applications, and access control list.

Figure 3 shows some of JPA annotations for the Entity class. For the sake of
brevity, the import statements were not shown.

3.2 Interoperability

One of the goals of ICOM is seamless interoperability between different collab-
orative work environments. This requires an interchange mechanism between
such environments. Since these environments may use different programming
languages, the interchange format must be language-independent. The most
commonly-used interchange format today is XML, and ICOM has been expressed
in terms of XML Schema. This allows one to exchange data via SOAP/REST
web services. The XML Schema specification was derived from the POJO classes



package icom;

@Entity
@Xm1Type (name="Entity", namespace="http://docs.oasis-open.org/ns/icom/core/201008")
@XmlRootElement (namespace="http://docs.oasis-open.org/ns/icom/core/201008")
©XmlAccessorType (FIELD)
public abstract class Entity implements Identifiable {
QEmbeddedId
protected Id objectlId;
@Version
protected ChangeToken changeToken;
@ManyToOne
Actor createdBy;
@ManyToMany (targetEntity=Marker.class)
@XmlElement (name="attachedMarker",
namespace="http://docs.oasis-open.org/ns/icom/metadata/201008")
Set<Marker> attachedMarkers;

Fig. 3. Some of the fields and their JPA annotations for the Entity class

<xs:complexType name="Entity" abstract="true">
<xs:sequence>
<xs:element name="objectId" type="icom_core:Id" minOccurs="0" />
<xs:element name="changeToken" type="icom_core:ChangeToken" minOccurs="0" />
<xs:element name="name" type="xs:string" minOccurs="0" />
<xs:element name="creationDate" type="xs:dateTime" minOccurs="0" />
<xs:element name="createdBy" type="icom_core:Actor" minOccurs="0" />
<xs:element name="lastModificationDate" type="xs:dateTime" minOccurs="0" />
<xs:element name="lastModifiedBy" type="icom_core:Actor" minOccurs="0" />
<xs:element name="parent" type="xs:anyType" minOccurs="0" />
<xs:element ref="icom_ac:owner" minOccurs="0" />
<xs:element ref="icom_ac:accessControlList" minOccurs="0" />
<xs:element ref="icom_meta:attachedMarker" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="icom_meta:categoryApplication" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="icom_meta:tagApplication" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>

Fig. 4. XML Schema for the Entity class

using the JAXB schemagen processor?. Figure 4 shows the XML Schema repre-
sentation of the Entity class.

3.3 Semantic Representation

ICOM also has representations in RDF and OWL. The semantic representation
is modular, reflecting the UML model, consisting of a core ontology, and exten-
sions. The ICOM ontologies were defined through a direct translation from the
authoritative specification.

Providing a semantic representation further accelerates the communication
and interconnection of data between different collaboration tools. Other benefits
include: access to the growing amount of Linked Data that is available, and infer-
ence. With inference, we can enrich the data, but also check for consistency when

9 http://docs.oracle.com/javase,/7/docs/technotes/tools/share/schemagen.html



using ICOM with other ontologies. ICOM data with a seamless programming
model like JPA and a concomitant RDF representation will lower the barrier for
applying inference engines. Figuratively speaking, a rich vocabulary of “nouns”
in ICOM makes up for the strong “verbs” in service interfaces. A well-defined
set of classes of ICOM makes the API amenable for rule-based applications and
declarative inference. ICOM containers are active or reactive entities, for exam-
ple conference and chat rooms are highly active while outbox, calendar, and task
list are reactive. Their behavior can be augmented by applications.

4 A Use Case — Integration with Semantic Media Wiki

ICOM Calendar

August ~|[2012

4 Today p
August 2012 a—
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1 2 3 4
5 6 7 8 ] 10 11
12 13 14| psmw 15 16 17 18
Meeting
Aug 15 2012
19 |psmw 20 21 22 23 24 25
Meeting
Aug 20 2012
PSMW
Meeting Aug
202012
Afternoon
26 27 psmw 28 29 30 31
Meeting
Aug 28 2012

Fig. 5. Example of a calendar module that integrates SMW and ICOM

A wiki is a website which allows its users to collaborate to produce and edit
content via a web browser. The resulting content is easily understood by users,
but computers cannot understand or evaluate it. A semantic wiki allows a user
to add semantic annotations that allow the wiki to function as a knowledge base
which supports inference and semantic query capabilities. The most popular



wiki software is MediaWiki'?, the underlying software for Wikipedia. The most
popular semantic wiki software is Semantic MediaWiki (SMW)!L.

Unfortunately, just having semantic annotations does not mean that differ-
ent individuals or communities will specify annotations that are compatible with
other individuals or communities. Ontologies can provide standard terminologies
for annotations that allow for semantic interoperability within an SMW site as
well as between sites. The ICOM ontology (available in both RDF and OWL) is
especially appropriate for SMW because both ICOM and SMW are concerned
with supporting collaboration. We have developed a proof of concept for the
use of ICOM in a semantic wiki by developing SMW modules for calendars,
which make use of the powerful semantic search feature of SMW. Figure 5 il-
lustrates one view of the calendar module. This module is publicly avalable at
http://psmw-test.cim3.net/w/index.php/ICOM_Calendar.

Other capabilities enabled by the integration of ICOM with SMW include
the ability to export data to different formats and to mash-up calendar data
from multiple sources. Our SMW modules illustrate how the ICOM RDF and
OWL ontologies can enhance interoperability of collaboration tools.

Our Calendar module is a customizable Template that is written in the cal-
endar format of the Semantic Result Formats[20]. This Template uses ICOM
properties. Instantiating the Template produces a reusable Form. If one clicks
on the meeting on August 15 in Figure 5, one can see an example of such a
Form, which is shown in Figure 6. This form shows the ICOM properties of the
meeting along with their values. The values can be modified by clicking on the
“Edit with form” tab. The meetings to be included in a particular Form are
determined by a SPARQL[21] query. A user can either customize the Template
or reuse an existing Form to create their own Calendar.

5 Conclusion and Future Work

We have described the ICOM framework for Interoperable Collaboration Ser-
vices. Like most standards, the ICOM is specified in an authoritative document
using a specification language (CMIS) that is designed to be easily readable by
humans. However, ICOM is intended to be mainly used as an interoperability
framework within a collaborative work environment for such tasks as storing
data, sending data to other collaboration services as well as interacting with
human collaborators. As a result, the ICOM framework has been translated to a
number of other languages to facilitate these many purposes. Inasmuch as many
other kinds of applications have these same requirements, it would be useful for
their standards to be translated to other languages as well. Accordingly, we plan
to use our translation software with other standards.

19 http:/ /www.mediawiki.org/
" http://semantic-mediawiki.org/



Page Discussion Read Edit with form Edit ~ r

PSMW Meeting Aug 15 2012

location Boston, MA

organizer YuwangYin

participant YuwangYin, Admin, Kenb
priority Low

editMode AttendeeCopy

startDate Aug 15 2012 20:00:00
endDate Aug 15 2012 21:00:00

fromRecurringOccurrenceSeries True

exceptionToOccurrenceSeries True

occurrenceStatus Tentative
occurrenceType Meeting
attendee

attendeeParticipantStatus

Category: Event

Fig. 6. An example of a customized Form used for a meeting

Acknowledgements

The authors wish to extend their thanks to colleagues who have helped with
different domain expertise. Especially, we thank Rafiul Ahad and Stefan Decker
for supporting this work.

This is a post-peer-review, pre-copyedit version of an article published in: A.
Haller et al. (Eds.): WISE 2011 and 2012 Combined Workshops, LNCS 7652,
pp. 147-158. Springer, Heidelberg (2013).

References

1. Zeilenga, K.D.: Lightweight Directory Access Protocol (LDAP): Directory Infor-
mation Models. IETF RFC 4512 (Proposed Standard) (June 2006)

2. Brown, A., Gur-Esh, E., McVeigh, R., Miiller, F.: Content Management Interop-
erability Services (CMIS), Version 1.0. OASIS Standard (May 2010)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Nuescheler, D.: Content Repository for Java’™ Technology API Version 2.0.
http://jcp.org/en/jsr/detail?id=283 (August 2009)

Dusseault, L.: HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). IETF RFC 4918 (Proposed Standard) (June 2007)

Crispin, M.: Internet Message Access Protocol Version 4revl. IETF RFC 2060
(Proposed Standard) (December 1996)

Klensin, J.: Simple mail transfer protocol. IETF RFC 5321 (Draft Standard)
(October 2008)

Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core.
IETF RFC 3920 (Proposed Standard) (October 2004) Obsoleted by RFC 6120,
updated by RFC 6122.

Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Instant
Messaging and Presence. IETF RFC 3921 (Proposed Standard) (October 2004)
Obsoleted by RFC 6121.

Dawson, F., Howes, T.: vCard MIME Directory Profile. IETF RFC 2426 (Proposed
Standard) (September 1998)

Desruisseaux, B.: Internet Calendaring and Scheduling Core Object Specification
(iCalendar). IETF RFC 5545 (Proposed Standard) (September 2009)

Daboo, C., Desruisseaux, B., Dusseault, L.: Calendaring Extensions to WebDAV
(CalDAV). IETF RFC 4791 (Proposed Standard) (March 2007)

: Business Process Model and Notation (BPMN) Version 2.0.
http://www.omg.org/spec/BPMN/2.0 (January 2011)

Jordan, D.; Evdemon, J.: Web Services Business Process Execution Language
(WSBPEL), Version 2.0. OASIS Standard (April 2007)

Ings, D.: WS-BPEL Extension for People (BPEL4People) Specification, Version
1.1. OASIS Committee Specification (August 2010)

Ings, D.: Web Services — Human Task (WS-HumanTask) Specification, Version
1.1. OASIS Committee Specification (August 2010)

Brickley, D., Miller, L. FOAF Vocabulary Specification 0.98.
http://xmlns.com/foaf/spec/ (August 2010)

Berrueta, D., Brickley, D., Decker, S., Fernndez, S., Grn, C., Harth, A., Heath, T.,
Idehen, K., Kjernsmo, K., Miles, A., Passant, A., Polleres, A., Polo, L., Sintek, M.:
SIOC Core Ontology Specification. W3C Member Submission, W3C (June 2007)
Chan, E.S., Durusau, P.: Integrated Collaboration Object Model (ICOM) for In-
teroperable Collaboration Services, Version 1.0. OASIS Committee Specification
(August 2012)

Chan, E.S.: OpenlCOM: A JPA Framework for Integrated Collaboration
Environments, Part 1. http://today.java.net/article/2011/03/21/openicom-jpa-
framework-integrated-collaboration-environments-part-1 (March 2011)

Hong Kong, J., Koren, Y., De Dauw, J.: Semantic Result Formats.
http://semantic-mediawiki.org/wiki/Semantic_Result_Formats (2012)
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommentation, W3C (January 2008)



