
1

Open Ontology Open Ontology 
Repository: Architecture Repository: Architecture 

and Interfacesand Interfaces

Ken BaclawskiKen Baclawski
Northeastern University Northeastern University 

1



2

OutlineOutline

 RequirementsRequirements
 ArchitectureArchitecture
 InterfacesInterfaces
 Data ModelData Model
 Future WorkFuture Work

2



3

RequirementsRequirements

 GoalsGoals
 Nonfunctional requirementsNonfunctional requirements
 Use case descriptionsUse case descriptions
 Wiki page: Wiki page: http://ontolog.cim3.net/cgi-bin/wiki.pl?http://ontolog.cim3.net/cgi-bin/wiki.pl?

OpenOntologyRepository_Requirement  OpenOntologyRepository_Requirement  

3



4

OOR GoalsOOR Goals

 A well-maintained persistent store (with high A well-maintained persistent store (with high 
availability and performance) where availability and performance) where 
ontological work can be stored, shared and ontological work can be stored, shared and 
accessed consistently;accessed consistently;

 Mechanisms for registering and “governing” Mechanisms for registering and “governing” 
ontologies, with provenance and versioning, ontologies, with provenance and versioning, 
made available (logically) in one place so that made available (logically) in one place so that 
they can be browsed, discovered, queried, they can be browsed, discovered, queried, 
analyzed, validated and reused;analyzed, validated and reused;

 Services across disparate ontological artifacts Services across disparate ontological artifacts 
supporting cross-domain interoperability, supporting cross-domain interoperability, 
mapping, application and inferencing; andmapping, application and inferencing; and

 Registration of semantic services to support Registration of semantic services to support 
peer OORs peer OORs 

4



5

Nonfunctional RequirementsNonfunctional Requirements

 The repository architecture shall be scalable.The repository architecture shall be scalable.
 The repository shall be distributed.The repository shall be distributed.
 The specification of the repository shall be The specification of the repository shall be 

sufficiently detailed and platform independent to sufficiently detailed and platform independent to 
allow multiple implementations.allow multiple implementations.

 The repository shall be capable of supporting The repository shall be capable of supporting 
ontologies in languages that have reasoners ontologies in languages that have reasoners 
[supporting inferencing].[supporting inferencing].

 The repository architecture shall support The repository architecture shall support 
distributed repositories.distributed repositories.

 The repository architecture shall not require a The repository architecture shall not require a 
hierarchical structure.hierarchical structure.  

5



6

Use Cases



7

ArchitectureArchitecture

 GoalsGoals
 Modularity TargetsModularity Targets
 Proposed ArchitectureProposed Architecture



8

Architecture GoalsArchitecture Goals
 OOR requires an open and well documented OOR requires an open and well documented 

architecture to architecture to 
– Allow multiple communities and organizations to Allow multiple communities and organizations to 

participate in the OOR participate in the OOR 
– Produce standard OOR functionalities and Produce standard OOR functionalities and 

behaviors. behaviors. 
 OOR Architectural PrinciplesOOR Architectural Principles

– Decoupling of responsibilitiesDecoupling of responsibilities – To support  – To support 
multiple knowledge representations/languagesmultiple knowledge representations/languages

– Implementation/Platform independenceImplementation/Platform independence – To  – To 
support acceptance, multiple instances, and support acceptance, multiple instances, and 
evolutionevolution

– Ontologically drivenOntologically driven – To allow for evolution of  – To allow for evolution of 
the OOR and reduce overall development coststhe OOR and reduce overall development costs

8



9

Modularity TargetsModularity Targets

 Registry functionsRegistry functions
 Repository functionsRepository functions
 KR languagesKR languages
 Gatekeeping policiesGatekeeping policies
 Intellectual Property Rights policiesIntellectual Property Rights policies
 Federation mechanismsFederation mechanisms
 Value-added servicesValue-added services

9



10

Proposed Architecture



11

InterfacesInterfaces

 WADL (REST)WADL (REST)
– Uses URL formatting of parametersUses URL formatting of parameters
– Parameters are strings of various kinds: path, Parameters are strings of various kinds: path, 

query, form, matrix, header, cookiequery, form, matrix, header, cookie
 WSDL (SOAP)WSDL (SOAP)

– Uses XML format for parameters and return Uses XML format for parameters and return 
valuesvalues

– Maps operations to methodsMaps operations to methods
– Maps XML parameters to objectsMaps XML parameters to objects



12

WADL/RESTWADL/REST

 BioPortal core was refactored to use BioPortal core was refactored to use 
JAX-RSJAX-RS

 URL mapping specified by URL mapping specified by 
annotationsannotations

 WADL generated from the JAX-RS WADL generated from the JAX-RS 
resource classesresource classes

 Resource methods call the Resource methods call the 
WSDL/SOAP methods.WSDL/SOAP methods.

 Refactored OOR core runs in Tomcat.Refactored OOR core runs in Tomcat.



13

WSDL/SOAPWSDL/SOAP

 Derived from the BioPortal Service classesDerived from the BioPortal Service classes
 WSDL generated using JWSWSDL generated using JWS
 There are 126 methods:There are 126 methods:

– Ontology Registration (6)Ontology Registration (6)
– Find Ontologies (25)Find Ontologies (25)
– Search and Navigation within one ontology (18)Search and Navigation within one ontology (18)
– Differences between ontologies (5)Differences between ontologies (5)
– Evaluations and Metrics (16)Evaluations and Metrics (16)
– Notification and Subscriptions (8)Notification and Subscriptions (8)
– Generation of RDF (5)Generation of RDF (5)
– Ontology Development (22)Ontology Development (22)
– Administration (21)Administration (21)



14

WSDL/SOAPWSDL/SOAP

 WSDL and SOAP SEI available at OOR WSDL and SOAP SEI available at OOR 
Interface  Interface  

 Examples:Examples:
public List<OntologyBean> public List<OntologyBean> 
findLatestActiveOntologyViewVersions() throws findLatestActiveOntologyViewVersions() throws 
Exception;Exception;

public Page<SearchBean> executeQuery1(String expr, public Page<SearchBean> executeQuery1(String expr, 
boolean includeProperties, boolean isExactMatch, boolean includeProperties, boolean isExactMatch, 
Integer pageSize, Integer pageNum, Integer Integer pageSize, Integer pageNum, Integer 
maxNumHits) throws Exception;maxNumHits) throws Exception;

public Page<SearchBean> executeQuery2(String expr, public Page<SearchBean> executeQuery2(String expr, 
boolean includeProperties, boolean isExactMatch, boolean includeProperties, boolean isExactMatch, 
Integer maxNumHits) throws Exception;Integer maxNumHits) throws Exception;



15

Data ModelData Model

 Data stored in MySQLData stored in MySQL
 UML class diagram shown on next UML class diagram shown on next 

two slides.two slides.



16



17



18

Suggestions for Future WorkSuggestions for Future Work

 Refactor database componentRefactor database component
 Split core into two componentsSplit core into two components
 Integrate the gatekeeperIntegrate the gatekeeper
 Develop and integrate the federatorDevelop and integrate the federator


	Open Ontology Repository: Architecture and Interfaces
	Outline
	Requirements
	OOR Goals
	Nonfunctional Requirements
	Use Cases
	Architecture
	Architecture Goals
	Modularity Targets
	Proposed Architecture
	Interfaces
	WADL/REST
	WSDL/SOAP
	Slide 14
	Data Model
	Slide 16
	Slide 17
	Suggestions for Future Work

