
BaseVISor: A Triples-Based Inference Engine

Outfitted to Process RuleML & R-Entailment Rules
*

C. J. Matheus K. Baclawski M. M. Kokar

Versatile Information Systems College of Computer and Infor. Science Dept. of Electrical and Computing Eng.

61 Nicholas Road Northeastern University Northeastern University

Framingham, MA USA Boston, MA USA Boston, MA USA

cmatheus@vistology.com kenb@ccs.neu.edu mkokar@ece.neu.edu

*
 This work was partially supported by U.S. ONR STTR Contract Number N00014-05-C-0367 and U.S. Army SBIR Contract Number

W15P7T-05-C-T204.

 Abstract - BaseVISor is a forward-chaining inference

engine based on a Rete network optimized for the

processing of RDF triples. A clause within the body and

head of a rule either represents an RDF triple or invokes a

procedural attachment (either built-in or user defined).

This paper describes how BaseVISor has been outfitted to

process RuleML and R-Entailment rules. In the case of

RuleML, n-ary predicates are automatically translated

into binary predicates and reified statements that

encapsulate the n-ary predicate's arguments. For R-

Entailment rules, the appropriate R-Entailment axioms,

axiomatic triples and consistency rules are automatically

imported into the engine and then used to derive all triples

entailed by any set of triples asserted into the fact base.

Operation of the system is illustrated using sample rule

sets for both RuleML and R-Entailment and instructions

are provided on how to obtain the BaseVISor beta release

and process the examples.

I. INTRODUCTION

The Web Ontology Language (OWL) [1] has

become popular for formally capturing the classes and

simple properties relevant to a particular domain of

interest, usually with the intent of automatically

reasoning about instances from the domain. An

appealing characteristic of OWL DL is its formal

semantics grounded in description logic [2] which are

sound, complete and relatively tractable. To make use

of OWL DL’s formal semantics one needs to employ a

reasoning system capable of enforcing the axioms of the

language; well-known examples of such systems include

the tableaux reasoners FaCT [3], Pellet [4], RACER[5]

and Cerebra [6]. A common criticism of OWL is its

expressive limitations with regards to constructing

composite properties (i.e., properties composed of other

properties, related to the notion of joins in relational

databases) with the prototypical example being that of

“uncle” which can be composed from the properties

“parent” and “bother” [7]. This limitation has forced us

and many others to find ways to extend OWL through

the use of rule languages [8][9][10]. The approach

taken with SWRL is an augmentation of OWL DL with

Horn-style rules [11]. Unfortunately SWRL is known to

be undecidable and there are few reasoning engines that

support it, with Hoolet being perhaps the most complete

effort, though it is not “in any way an effective

reasoner” [12].

To support our development of intelligent

information fusion systems we have the need for a rule

language and engine that will permit the representation

of complex logical conditions and support a reasonable

set of DL constructs while remaining sound, complete

and tractable. Furthermore we would like the language

to permit a high enough level of abstraction that we do

not have to think and code at the low level of raw triples

(the modern day equivalent of programming in assembly

code). Towards this end we have developed a forward-

chaining inference engine called BaseVISor that 1) is

based on a Rete network optimized for the processing of

triples, 2) is able to process RuleML [13] rules

containing n-ary predicates and 3) incorporates the

axioms and consistency rules for R-Entailment [14]

which supports all of RDF/RDFS and a part of OWL

semantics along with general implication. This paper

describes the key features of BaseVISor, explains the

process used for translating RuleML rules and facts with

n-ary predicates to-and-from BaseVISor rules and facts

with binary predicates, discusses the implementation of

the R-Entailment axioms and illustrates the systems

application to some common examples. We conclude

with information on how to obtain the BaseVISor

distribution package.

II. BASEVISOR

At the heart of BaseVISor is a Rete-based [15],

forward-chaining inference engine optimized for the

processing of RDF triples. This engine is similar to

other Rete-based engines such as Jess [16] and CLIPS

[17]. The primary difference is that it uses a simple data

structure for its facts (i.e., triples) rather than arbitrary

list structures, which permits greatly enhanced

efficiency in pattern matching which is at the core of a

Rete network (cf. [8]). BaseVISor is written in Java and

includes an API for easily adding user-defined

procedural attachments. A large subset of the built-ins

defined for SWRL is included in the BaseVISor

distribution as built-in procedural attachments. The

BaseVISor API also facilitates the embedding of the

system within another Java application.

BaseVISor’s native rule language uses a simple

XML syntax to define facts, create rules and issue

queries. A fact is a triple defined by subject, predicate

and object elements, as shown in the following two

examples:

<triple>
 <subject resource=”#Bill”/>
 <predicate resource=”#spouseOf”/>
 <object resource=”#Hillary”/>
</triple>

<triple>
 <predicate resource=”#age”/>
 <subject resource=”#Bill”/>
 <object

 datatype=”&xsd;nonNegativeInteger”>
50

 </object>
</triple>

The subject and predicate elements of a fact always

refer to a resource which is specified using the

resource attribute. The object element of a fact can be

either a resource or a literal, in which case the value is

defined in the content of the element and the XSD

datatype of the literal is specified using the datatype

attribute; if no datatype is specified, a plainLiteral is

assumed. The subject, predicate and object elements

can appear in any order within a triple element.

Rules are defined within a rulebase with each

rule consisting of a body element and a head element

(which can occur in either order). The name attribute

can be used to assign names to a rulebase or rule. An

example of the typical structure of a rule within a

rulebase is shown here:

<rulebase name=”Rule Set A”>

 <rule name=”Rule 1”>
 <body>
 <triple>…</triple>

 </body>
 <head>

 <assert>
 <triple>…</triple>
 </assert>

 </head>
 </rule>
 …
</rulebase>

The body of a rule usually contains one or more

triples which share the syntax used by facts described

above except that triples within rule bodies can contain

variables. Variables are indicated by providing the

variable’s name as the value of the variable attribute

on the subject, object or predicate element, e.g.:

<triple>
 <subject variable=”X”/>
 <predicate resource=”#spouseOf”/>
 <object variable=”Y”/>
</triple>

In addition to triples, bodies may also contain

procedural attachments, either built-ins or user-defined.

Built-in procedural attachments include

print/println to output text to the console, bind for

explicitly binding a value to a variable, assert for

asserting a triple into the fact base, retract for

retracting a triple from the fact base, gensym for

generating a symbol to represent a resource, not for

matching on the absence of one or more triples within

the fact base, equality/inequality functions (i.e.,

>,<,>=,<=,=) and common mathematical functions

(e.g., +,-,*,/,mod, **). Any procedural attachment

may occur within the head of a rule except for not

which is restricted to use within rule bodies. The head

is typically where assertions and retractions occur.

It is possible to query the fact base outside of a rule

using the query element and placing in its content one

or more triples containing variables. Here is a sample

query:

<query name="Vertebrate and Mammal">
 <triple>
 <subject variable="X"/>

 <predicate resource="#isa"/>
 <object resource="#Vertebrate"/>
 </triple>
 <triple>
 <subject variable="X"/>
 <predicate resource="#isa"/>
 <object resource="#mammal"/>
 </triple>
</query>

The result of a query is a list of variable bindings

that satisfy the constraints of the query.

The general way of running BaseVISor involves

writing an XML file containing facts (i.e., raw triples), a

rulebase and possibly one or more queries which is then

submitted to the standard BaseVISor Batch processor. It

is also possible to write statements to include other files

in the batch processing. In particular you can include

multiple rulebases using the include element and

providing the URL of the rulebase document. This

include element can also be used to import an

RDF/OWL document by specifying the lang attribute

to be “RDF”. Note that importing an RDF/OWL

document has the effect of asserting all of the explicit

RDF triples resulting from the parsing of the document

but none of the semantically derivable triples are

asserted. Deriving these inferable triples requires the

use of an axiomSet as describing below in the section

on R-entailment.

III. RULEML TO BASEVISOR RULES

While the native BaseVISor language is simple and

concise it is not expected that many people will choose

to use it directly as a language for manually writing

rules. Most real-world problems deal with concepts at a

higher abstraction level than raw triples. In these cases,

being forced to think and compose rules in terms of low

level triples is tedious at best (see [18]). Instead, we

expect users to either develop a high-level language

suited for their specific needs that can be converted to

BaseVISor rules, or use RuleML and take advantage of

the built-in ability of BaseVISor to convert RuleML

rulebases into native BaseVISor code. This conversion

is performed automatically when including a rulebase

that is identified as being in RuleML, e.g.,

<include lang="RuleML" url="gen.rml"/>

BaseVISor carries out the conversion through the

application of an XSLT script which has been written to

work with most versions of RuleML although not all of

the features of later versions are supported. In general,

BaseVISor is relevant to the modules that support Horn-

Log rules; specifically, RuleML elements handled by the

translation script include: Implies/imp, body/_body,

head/_head, And/and, Atom/atom, Rel/rel, Ind/ind, Data,

Equal, Naf and Query.

For RuleML rules that only contain unary or binary

predicates, such as M. Dean’s GEDCOM rulebase [19],

the translation is straight forward and amounts to little

more than changing element names and converting

atoms into triples. Atom conversion involves mapping

the first element of the atom to a predicate element, the

second element to a subject element and the third

element to an object element and then determining for

each whether it represents a variable (<Var>), a

resource (<Ind>) or a datatype literal (<Data>).

When n-ary predicates are used in the RuleML rules

things become more complicated by the need to convert

everything down into binary predicates. This process

needs to be done for all facts defined by n-ary predicates

and all rules involving n-ary predicates. To convert an n-

ary predicate fact, a new resource is created to which the

predicate’s name and its n arguments can be associated;

the n-ary fact is then replaced with a set of n+1 of binary

predicates (i.e., triples) in which the new resource serves

as the subject of each triple. This approach is modelled

after use case three in [20]. As an example, consider the

3-ary predicate fact

parentsOf(‘Bill’, ‘Hillary’, ‘George’)

which would be converted into binary predicates

represented by the following four triples:

<triple>
 <subject resource=”#__R1”/>
 <predicate
 resource=”#__property”/>
 <object resource=”#parentsOf”/>
</triple>

<triple>
 <subject resource=”#__R1”/>
 <predicate resource=”#__arg1”/>
 <object resource=”#Bill”/>
</triple>

<triple>
 <subject resource=”#__R1”/>
 <predicate resource=”#__arg2”/>
 <object resource=”#Hillary”/>
</triple>

<triple>
 <subject resource=”#__R1”/>
 <predicate resource=”#__arg3”/>
 <object resource=”#George”/>
</triple>

The resource #__R1 is (by its use as a subject)

inferred by the system to be an instance of some

(anonymous) rdfs:Class which need not be explicitly

defined. Likewise, the resource #__property is inferred

to be an rdfs:Property even though no explicit statement

to this effect is (or need be) made.

When an n-ary predicate occurs within a rule body

or head it is similarly converted into a set of binary

predicates, but in this case the subject of all of the

generated binary predicates will be a variable with a

randomly generated name that is the same for all n+1

triples corresponding to the n-ary predicate. When the

n-ary predicate appears in the head of a rule the

generated variable name is first bound to a new resource

created by an explicit call to gensym and then each of

the binary predicate triples is individually asserted. For

example, the following RuleML head taken from a rule

in H. Boley’s discount rules [21]:

<_head>
 <atom>
 <_opr><rel>discount</rel></_opr>
 <var>customer</var>
 <var>product</var>
 <ind>5.0 percent</ind>
 </atom>
</_head>

is translated into the following BaseVISor rule head:

<head>
 <bind variable="?Var-d0e10">
 <gensym/>
 </bind>
 <assert>
 <triple>
 <predicate
 resource="#__predicate"/>
 <subject
 variable="?Var-d0e10"/>
 <object resource="#discount"/>
 </triple>
 </assert>
 <assert>
 <triple>
 <predicate
 resource="#__arg1"/>
 <subject
 variable="?Var-d0e10"/>
 <object variable="?customer"/>

 </triple>
 </assert>
 <assert>
 <triple>
 <predicate
 resource="#__arg2"/>
 <subject
 variable="?Var-d0e10"/>
 <object variable="?product"/>
 </triple>
 </assert>
 <assert>
 <triple>
 <predicate
 resource="#__arg3"/>
 <subject
 variable="?Var-d0e10"/>
 <object
 resource="#5.0 percent"/>
 </triple>
 </assert>
</head>

When a rule with a head like this fires, the four

triples are asserted into the fact base and can be matched

on by the bodies of rules that contain a similarly

structured set of triples containing one or more

variables. When rules stop firing the fact base can be

dumped to the console or queried. If dumped to the

console there is a second XSLT script that can be

applied to the inferred facts to reverse the translation of

any binary-encoded n-ary predicates back into their

standard RuleML (version 0.9) form. For example the

discount business rules and sample facts [21] were

converted to BaseVISor rules and processed by the

inference resulting in the following inferred facts:

 <Atom>
 <Rel>premium</Rel>
 <Ind>Peter Miller</Ind>
</Atom>
<Atom>
 <Rel>discount</Rel>
 <Ind>Peter Miller</Ind>
 <Ind>Honda</Ind>
 <Ind>5.0 percent</Ind>
</Atom>
<Atom>
 <Rel>discount</Rel>
 <Ind>Peter Miller</Ind>
 <Ind>Porsche</Ind>
 <Ind>7.5 percent</Ind>
</Atom>

IV. R-ENTAILMENT RULES

In [14], H. ter Horst proposed a language consisting

of RDF, RDFS, part of OWL DL and rules for which he

defined a general notion of R-Entailment. The desirable

characteristics of this language are 1) that the set of

entailed triples is (usually) finite and (usually) in

PSPACE making it well suited for a forward-chaining

inference engine, 2) it is decidable (for rules that do not

introduce blank nodes) and 3) its complexity is in NP

(for rules that do not introduce blank nodes and that satisfy a

bound on the size of rule bodies) but reduces to being in P

if the target RDF graph is ground. The price of these

qualities is that not all of OWL is supported. The

language does include all RDF and RDFS elements, plus

rules with variables and the following OWL elements:

owl:FunctionalProperty
owl:Restriction
owl:InverseFunctionalProperty
owl:onProperty
owl:SymmetricProperty
owl:hasValue
owl:TransitiveProperty
owl:someValuesFrom
owl:sameAs
owl:allValuesFrom
owl:inverseOf
owl:differentFrom
owl:equivalentClass
owl:disjointWith
owl:equivalentProperty

R-Entailment semantics are defined by a set of 44

proper rules, one axiom, several dozen axiomatic triples

plus two consistency rules. These have been translated

into BaseVISor triples and rules. In order to implement

the conditions of a number of the rules (particularly

those dealing with literals and blank nodes) a set of

procedural attachments were developed to handle the

identification of literals and resources (namely,
isLiteral, isPlainLiteral,isResource,

isLiteralBlank, and isTypedLiteral) and to

generate blank nodes and obtain literal values (namely,
getLiteralBlankNode, getTypedLiteralType

and getLiteralBlankNodeLiteral,).

An example of part of the R-Entailment

implementation in BaseVISor is shown here for

illustration purposes. The full set of axioms and rules is

included with the BaseVISor distribution (see section

V). The following is a small subset of the P axiomatic

triples:

<triple>
 <subject
 resource="owl:FunctionalProperty"/>
 <predicate
 resource="rdfs:subClassOf"/>

 <object
 resource="rdfs:Property"/>
</triple>

<triple>
 <subject
 resource="owl:SymmetricProperty"/>
 <predicate
 resource="rdfs:subClassOf"/>
 <object resource="rdfs:Property"/>
</triple>

<triple>
 <subject
 resource="owl:TransitiveProperty"/>
 <predicate
 resource="rdfs:subClassOf"/>
 <object resource="rdfs:Property"/>
</triple>

The following two rules provide a partial

representation of the BaseVISor implementation of R-

Entailment rules that make use of the procedural

attachments created specifically for the purpose of

supporting R-Entailment. The name attribute values on

the rules relate them to the R-Entailment rules as

labelled in [14].

<rule name="rdf2-D">
 <body>
 <triple>
 <subject variable="v"/>
 <predicate variable="p"/>
 <object variable="l"/>
 </triple>
 <isTypedLiteral>
 <param variable="l"/>
 </isTypedLiteral>
 </body>
 <head>
 <bind variable="bl">
 <getLiteralBnode>
 <param varaible="l"/>
 </getLiteralBnode>
 </bind>
 <bind variable="a">
 <getTypedLiteralType>
 <param variable="bl"/>
 </getTypedLiteralType>
 </bind>
 <assert>
 <triple>
 <subject variable="bl"/>
 <predicate resource="rdf:type"/>
 <object variable="a"/>
 </triple>
 </assert>
 </head>
</rule>

<rule name="rdfs1">

 <body>
 <triple>
 <subject variable="v"/>
 <predicate variable="p"/>
 <object variable="l"/>
 </triple>
 <isPlainLiteral>
 <param variable="l"/>
 </isPlainLiteral>
 </body>
 <head>
 <bind variable="bl">
 <getLiteralBlankNode>
 <param varaible="l"/>
 </getLiteralBlankNode>
 </bind>
 <assert>
 <triple>
 <subject variable="bl"/>
 <predicate resource="rdf:type"/>
 <object resource="rdfs:Literal"/>
 </triple>
 </assert>
 </head>
</rule>

In BaseVISor the R-entailment axioms can be used

to derive inferable facts from RDF/OWL triples (either

those asserted or those derived by the firing of user

defined rules) by including the axiomSet element as

follows:

<axiomSet name="R-Entailment"/>

Inclusion of this element has two effects: the R-

Entailment rules and axioms are loaded into the Rete

network and are applied to all triples added to the fact

base and 2) any BaseVISor rules that are loaded into

BaseVISor are first processed by the three R-Entailment

rules dealing with literals in rules (i.e., rules lg-R, rdf2-

DR and rdfs1-R from [14]) .

V. DISCUSSION

Some may question the value of combining n-ary

predicate translation with R-entailment since the reified

binary predicates cannot be reasoned about with

RDF/RDFS/OWL axioms. One example of where it

does make sense is when an R-Entailment-based

ontology is used to define classes and properties but

rules are used to determine membership in some of the

classes or to assign values to some of the properties (cf.,

[10]). In such a case it might be simpler to compose

some complex membership rules using n-ary predicates

(e.g., for chaining between rules) even though the final

facts that would be of interest would be binary

predicates (i.e., RDF triples) that could lead to

additional derived triples via the firing of some of the R-

Entailment rules.

According to the conditions of R-Entailment,

variables are not permitted in the heads of rules unless

they also appear in the body. It would seem that the

approach used for translating n-ary predicates into

binary predicates violates this condition. This situation

could be remedied by moving the bind statement from

the head to the body, without loss of generality or any

affect on the performance of the system. It has been left

this way for readability.

At the time of this writing we did not have sufficient

experimental results to include in the paper. We have

run the system on a number of different rule sets but we

have not done the kind of performance evaluations that

are needed to clearly demonstrate the benefits of

BaseVISor. Our plan is to perform such experiments in

the coming weeks in order to be able to include their

results in the final version of this paper.

VI. OBTAINING THE BASEVISOR DISTRIBUTION

 BaseVISor is being made available free of

charge for research and educational purposes. The

binary distribution along with documentation and

several sample rule sets can be downloaded from

http://www.vistology.com/BaseVISor.
†

VII. CONCLUSION

This paper described the core triples-based

inferencing capabilities of BaseVISor and introduced

two extinctions to the system. In the first extension,

BaseVISor has been given the ability to process RuleML

rules, including those with n-ary predicates which are

automatically translated to and from BaseVISor’s native

binary predicates encoded within triples. In the second

extension, R-Entailment rules and axioms have been

translated into BaseVISor rules and facts and specialized

procedural attachments were written to enable the

semantics for RDF, RDFS, part of OWL and rules to be

realized within BaseVISor. With this latter capability

BaseVISor moves beyond the realm of rule based

inference engines into the space of description logic

†
 The right to delay the public release of the BaseVISor

distribution is maintained by the authors until formal

publication of this paper.

reasoners. BaseVISor is freely available for research and

education purposes.

REFERENCES

1 W3C Web Ontology Language (OWL) homepage.

http://www.w3.org/2004/OWL/

2 The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge

University Press, 2002. ISBN 0521781760. Edited by

F. Baader, D. Calvanese, et al.

3 FaCT++ homepage.

http://owl.man.ac.uk/factplusplus/

4 Pellet homepage.

http://www.mindswap.org/2003/pellet/index.shtml

5 RACER homepage. http://www.racer-systems.com/

6 Cerebra homepage.

http://www.cerebra.com/index.html

7 I. Horrocks and P. F. Patel-Schneider. A Proposal for

an OWL Rules Language. In Proc. of the Thirteenth

Int’l World Wide Web Conf.(WWW 2004). ACM,

2004.

8 C. Matheus, K. Baclawski, M. Kokar, and J.

Letkowski, Constructing RuleML-Based Domain

Theories on top of OWL Ontologies. In Proceedings

of Rules and Rule Markup Languages for Sematic

Web: Second International Workshop, RuleML 2003,

Sanibel Island, Florida, October 2003.

9 C. Matheus, Using Ontology-based Rules for

Situation Awareness and Information Fusion.

Position Paper presented at the W3C Workshop on

Rule Languages for Interoperability, April 2005.

10 M. J. O'Connor, H. Knublauch, S. W. Tu, B. Grossof,

M. Dean, W. E. Grosso, M. A. Musen. Supporting

Rule System Interoperability on the Semantic Web

with SWRL. Fourth International Semantic Web

Conference, Galway, Ireland, 2005.

11 I. Horrocks, P. F. Patel-Schneider, H. Boley, S.

Tabet, B. Grosof, and M. Dean. SWRL: A semantic

web rule language combining OWL and RuleML.

W3C Member Submission, 21 May 2004.

http://www.w3.org/Submission/2004/SUBM-SWRL-

20040521/

12 Hoolet homepage. http://owl.man.ac.uk/hoolet/

13 RuleML homepage: http://www.ruleml.org/

14 H. ter Horst. Combining RDF and Part of OWL with

Rules: Semantics, Decidability, Complexity. In Proc.

of the Fourth Int’l Semantic Web Conference. Y. Gil

et al. (Eds.): ISWC 2005, LNCS 3729, pp. 668–684,

2005.

15 C. L. Forgy, "Rete: a fast algorithm for the many

pattern/many object pattern match problem,"

Artificial Intelligence, 1982, pp.17-37.

16 Jess homepage. http://herzberg.ca.sandia.gov/jess/

17 CLIPS homepage.

http://www.ghg.net/clips/CLIPS.html

18 C. Matheus, M. Kokar, K. Baclawski and J.

Letkowski, Using SWRL and OWL to Capture

Domain Knowledge for a Situation Awareness

Application Applied to a Supply Logistics Scenario.

In Proceedings of International Conference on Rules

and Rule Markup Languages for the Semantic Web,

RuleML-2005, Galway, Ireland, November, 2005.

19 M. Dean’s GEDCOM homepage.

http://www.daml.org/2001/02/gedcom-ruleml/

20 N. Noy and A. Rector (Eds.). Defining N-ary

Relations on the Semantic Web. W3C Working

Group Note 12 April 2006.

http://www.w3.org/TR/swbp-n-aryRelations/

21 H. Boley’s discount business rules.

http://www.ruleml.org/exa/0.8/discount.ruleml

