Category Theory-Based Synthesis of a Higher-Level
Fusion Algorithm: An Example

Mieczyslaw M. Kokar
Electrical & Computer Eng.
Northeastern University
360 Huntington Avenue
Boston, MA 02115, USA
mkokar@ece.neu.edu

Abstract - Higher-level fusion (e.g., Level 2 that
deals with derivation of relations among objects) of-
ten involves symbolic processing of information ob-
tained from lower levels (e.g., Level 1, which deals
with object detection, identification and tracking)
The
quantitative algorithms pass only some information
to higher levels; some of the information is ab-
stracted away in this process. However, this infor-
mation might be needed by some of the rules at a
higher level. Should in such a case the whole system

which is based upon quantitative algorithms.

be re-coded? In this paper we present an attempt to
overcome the need for re-coding the Level 1 software.
Instead, we propose to replace the activity of manu-
ally developing a fusion algorithm with an automated
synthesis of the specification of the algorithm fol-
lowed by automatic code generation. While solving
such a problem in its entirety is a rather distant goal,
in this paper we propose a solution to a more modest
sub-problem. Rather than attempting to solve arbi-
trary information fusion problems, we assume that
there exists a library of templates that specify in-
formation fusion objectives. The templates are for-
mal specifications represented in a formal language.
Since they are declarative, a variety of algorithms
can satisfy their requirements. This paper presents
an example of using a formal, category theory-based
approach to the problem of synthesizing algorithms
that satisfy templates for information fusion.

Keywords: Information fusion, category theory,
system synthesis, templates.

1 Introduction

One of the definitions of information fusion (or
data fusion) [1] is: “Data fusion is the process
of combining data or information to estimate
or predict entity states.” The JDL model [1]
associates entity types with “levels”. For in-
stance, Level 1 deals with objects, e.g., aircraft
or tank. Level 2, on the other hand, deals
with relations among such objects. Relations
are assessed by some algorithms (or rules) that

Kenneth Baclawski
Computer Science
Northeastern University
360 Huntington Avenue
Boston, MA 02115, USA
kenb@ccs.neu.edu

Hongge Gao
Electrical & Computer Eng.
Northeastern University
360 Huntington Avenue
Boston, MA 02115, USA
hgao®@ece.neu.edu

take various features of the objects detected at
Level 1 and use some background knowledge to
decide whether a relation among given objects
holds or not. Since the number of possible rela-
tions among the objects is exponentially high,
it is rather impossible to hard-code all of the
algorithms that might be needed to analyze a
specific type of relation. To address this prob-
lem, ontology-based approaches have been pro-
posed!. The main idea behind ontology-based
processing is that possible types of relations are
specified by an ontology, and a generic logic-
based inference engine is used to derive any
such relation (rather than hard-coding an al-
gorithm for each relation). While the use of a
logic-based inference engine for relation deriva-
tion may be reasonable for Level 2 processing,
where a lot of information is symbolic, this does
not seem to be a practical solution for Level 1,
where most of the processing is quantitative.
In symbolic processing, an algorithm is, in a
sense, synthesized dynamically. This is actu-
ally accomplished by the generic mechanism of
the inference engine. Since quantitative algo-
rithms are hard-coded, one cannot achieve the
flexibility comparable to the symbolic process-
ing at Level 2. Unfortunately, this also leads to
some problems, as described below.

Consider a scenario in which an analyst wants
to observe a specific type of relation. Suppose
the Level 2 knowledge base has a rule for deriv-
ing such a relation, but the rule requires some
information that Level 1 processes use in their
own processing but do not provide to the higher
levels. One way to deal with this would be to
rewrite the Level 1 processes so that they pass
more information to Level 2. The disadvan-
tage of this solution is that this Level 1 process
would be passing more information every time
it is invoked, even though the additional infor-
mation might be needed only occasionally. An
even bigger problem with this solution would
be that the whole system would have to be re-

LOne of the definitions of the term “ontology” is given in [2]:
“An ontology is a specification of a conceptualization.”



programmed, re-compiled and re-tested when-
ever such a new request by the analyst was
posted.

In this paper we describe our efforts to solve
the above problem in a different way. Our goal
is to investigate an approach that is based on
dynamic software composition, or more specifi-
cally on Model Driven Architecture (or MDA)
[3]. In the MDA approach, it is assumed that
software is specified using UML models (i.e.,
diagrams). In our case, we use formal specifi-
cations for software. Such a specification (also
referred to as a spec) contains some informa-
tion about each of the variables and each of the
functions of the software. All specs are repre-
sented in a language with mathematically de-
fined and computer executable semantics. Sim-
ilarly, the rules at the higher level are also rep-
resented in the formal language. Consequently,
the rules and the specs can be naturally inte-
grated within a formal deductive system. In
other words, the problem of dynamic execution
of a rule at Level 2, which in turn requires in-
formation from Level 1, is equivalent to synthe-
sizing an algorithm that integrates the Level 1
specs with the Level 2 rules. While it would
be desirable to have the whole synthesis task
done in a fully automatic way, in this paper we
present a more modest approach in which the
synthesis process is constrained by a template
selected by the analyst.

In the next section we briefly overview the
software development process. The main intent
here is to identify the activities that can be as-
signed to two different actors in this process:
the fusion expert and the software developer.
Section 3 gives a brief overview of the basics
of the formal method approach to the develop-
ment of software. Section 4 introduces the basic
concepts of category theory. Our approach is
based on category theory in that it treats spec-
ifications of software modules as objects in a
category and then uses the category theory op-
eration of colimit as a mechanism for combining
multiple specifications into one. To show the
steps involved in the composition of a higher-
level fusion module we use an example of an in-
trusion detection system able to recognize one
type of intrusion - the smurf attack [4]. This
example is discussed in Section 5. In Section
6 we describe the sensors used in the intrusion
detection process. Then we show a template
that can be used for generating queries about
smurf attacks. This is followed by the step of
mapping the problem into the category theory
framework (Section 8). In Section 9 we describe
the code generation process and the resulting
code. And finally in Section 10 we present con-
clusions and future directions for this line of
research.

2 Software Development

A large portion of the effort of developing an in-
formation fusion system is the development of
the software to perform the information combi-
nation (fusion) operations. This includes such
engineering activities as system specification,
software specification, software design, algo-
rithm development, software implementation,
testing and maintenance. Scientists in the in-
formation fusion domain deal mainly with al-
gorithm development. The fusion algorithms
must (typically) perform such functions as data
association, object detection, recognition and
tracking, relation derivation, situation assess-
ment, and so on. While there is always a pre-
requisite that there must be multiple sources of
information involved, the methods of analysis of
that information are not particularly specific to
the field of information fusion. As often stated
in the fusion literature (cf. [5]) the algorithms
are standard algorithms for computing the un-
certainty of particular decisions rather than be-
ing specific to fusion.

The above listed activities of fusion system
development require at least two kinds of exper-
tise - information fusion and software engineer-
ing. The two kinds of expertise are rarely found
in one person. Therefore it would be good to
have a clear partition of the task of fusion sys-
tem development into subtasks each of which
requires just one kind of expertise. Further-
more, one could also try to automate as much
of the development effort as possible. One con-
dition that must be satisfied, though, is that the
interface between a fusion task and the software
engineering task should be specified very pre-
cisely so that there is no confusion about the
semantics of the dependency between the two
tasks. One way to achieve such a clarity is to
use the formal method approach of software de-
velopment [6, 7, 8, 9].

The automation of specification development
is a very difficult task. Typically the specifica-
tion of a system is captured in text and pos-
sibly some pictures. Then this representation
is coded into a formal method system. Ob-
viously, it would be nice if we could have a
translator that could read the text and then
output a specification in a formal method lan-
guage. Unfortunately, such a situation is a dis-
tant, perhaps even unachievable, goal. In this
paper we discuss an approach in which a spec-
ification developer first specifies signatures of
three kinds of processing module: sensor mod-
ules, domain modules and goal modules. Sen-
sor modules capture the functions of particular
sensors. In short, such a function assigns some
sensor values (data) to sensor coordinates. Do-
main modules capture the functions that assign
object values such as object names (labels) to



world coordinates. And finally, a goal module
captures the problem (the goal) that a given
fusion system is supposed to solve. In general,
any fusion system must assign some object val-
ues to world coordinates based upon sensory
(or, more general, data) inputs. In the second
step, the specifier browses through a library of
templates of fusion systems to find one that
matches the sensor, domain and goal modules.
The next step is to find and include specifica-
tions from a library of specifications relevant to
the templates. We assume that such a library
is available; we call it the background knowl-
edge specification library. This step can be sup-
ported by a computer system. Finally, the last
step is to perform code generation.

3 Formal Methods

The use of formal methods in software engineer-
ing is a very active research area. The appli-
cability of these methods is currently limited
mainly to safety-critical systems [7]. Never-
theless, there is an expectation that the use of
formal methods in software development will
eventually be not only more popular, but also
less expensive than the traditional approaches
to software development [10].

Using the formal method approach, one first
specifies a system formally and then develops
the code through the process called refinement
[11]. Such a two-step approach gives a nice par-
tition of responsibilities - specifications can be
developed by fusion experts and the code devel-
opment can be the responsibility of a software
engineer. This also means that the goal of au-
tomation of development of a fusion system can
be split into the automation of specification de-
velopment and automation of refinement.

Note that combining algorithms is a more
complex operation than just combining data.
Data can be combined using various set the-
oretic operations, such as union, intersection,
Cartesian product, and operations for combin-
ing uncertainty. Such operations cannot be
used directly to combine algorithms, and other
kinds of combination operations are needed.
Category theory [12] is a framework which can
combine algorithms, using operations such as
the colimit which is introduced below.

If one uses the category-based Specware tool
[13], the latter step can be automated to a great
degree essentially for free, because Specware
supports code generation. We used this feature
in our research reported in this paper.

4 Category Theory

A category [12] is a mathematical structure con-
sisting of category objects, category arrows (or

morphisms) and a composition operation on
certain pairs of morphisms such that compo-
sition is associative. For instance, in category
Set the objects are all sets. Category arrows
define the relationships between pairs of ob-
jects, with the first object called the domain
and the second called the codomain. For exam-
ple, if P and (Q are category objects, then an
arrow f with domain P and codomain @) would

be written p _r Q. A pair of arrows f and ¢

is composable if the codomain of f is the domain
of g. For instance, in the category Set the ar-
rows are functions between sets. For every pair
of composable arrows f and g the composition
operation assigns an arrow g o f whose domain
is the domain of f and whose codomain is the
codomain of g. In the category Set the composi-
tion is the composition of functions. A diagram
in a category is a collection of objects and a
collection of arrows between these objects. A
diagram is commutative if the composition of
arrows within the diagram is always consistent.
For example, the following diagram of four ob-
jects and four arrows

P
R

is commutative provided that the composition
of the arrows p and ¢ is the same as the compo-
sition of the arrows r and s, i.e., gop=sor.

The colimit of a diagram D is the object that
“fuses” the objects of the diagram while unify-
ing the common (shared) parts of the diagram.
More precisely a colimit is an object C with the
following two properties:

p
e

CQ'T@

- -
S

1. There is a morphism from every object in D
to the object C such that these morphisms
together with the morphisms in D define
a commutative diagram. These morphisms
are called the cone, with C as the apex of
the cone.

2. If B is any object that satisfies the first
property, then there is a unique morphism

from C to B that commutes with the cones
of B and C.

The first property ensures that C' fuses all of
objects of the diagram. However this property
alone would allow C' to have additional parts or
to fuse parts that are not in common. The sec-
ond property ensures that C' exactly fuses the
objects of the diagram and unifies only the com-
mon parts and no others. The second property
implies that a colimit is unique up to isomor-
phism, and for this reason one usually refers to
it as the colimit. For some categories the col-
imit of a commutative diagram may not always



exist. Accordingly, for each category one must
check that colimits exist.

For example, in the category Set, let
P={1,2,3}, R={6,7,8}, and Q={3}, where the
numbers represent identifiers of objects in two
views of a scene. Next define the morphisms
(functions) f and g on @ that f(3)=3 and ¢(3)="7.
The colimit of the commutative diagram

Q
/ X
P R
is a 5-element set. For example, C={1,2,3,6,8}
is a colimit. By definition of the colimit, there

is a commutative diagram of morphisms from
P, Q, and R to C as follows:

The morphisms h, k¥ and | map the elements of
P, @ and R to C exactly as one would expect,
except that [(7)=3. Intuitively, C is obtained by
combining (fusing) the elements of P and R so
that 3 and 7 identify the same object in D. C'is
the set of common elements of P and R.

For specifying fusion systems we use the cat-
egory Spec. The objects of Spec are algebraic
specifications (or specs for short) which consist
of three kinds of element:

1. A sort, also called a type, is a set of val-
ues. Sorts can be constructed from other
sorts of the spec by using constructs such
as the Cartesian product or the exponential
(i.e., the set of all functions from one sort
to another).

2. An operation or op is a function from one
sort to another sort. Like sorts, ops can be
defined in terms of other ops of the spec.

3. An axiom is a requirement or constraint
that the sorts and ops must satisfy.

An interpretation of a spec is a choice of a set
for each sort and a choice of a function for each
operation such that the functions have the ap-
propriate signatures and the axioms are all true
statements about the sets and functions. A the-
orem of a spec is a statement that is true in any
interpretation of the spec. A spec is consistent
if it has at least one interpretation. We always
assume that our specs are consistent.

A morphism in the Spec category maps sorts
and operations of a domain spec to sorts and
operations of a codomain spec such that ax-
ioms of the domain spec are theorems in the

codomain spec. Goguen showed that Spec has
the property that every finite diagram has a col-
imit [14]. The colimit operation creates a new
specification from a diagram of existing specifi-
cations. This new specification has all the sorts
and operations of the original set of specifica-
tions without duplicating the shared sorts and
operations.

For a more complete treatment of category
theory see [12]. Algebraic specifications are de-
scribed in [16]. Examples related to information
fusion can be found in [17, 18, 19, 20].

5 Smurf Attack Detection

To demonstrate the idea of template-based
specification synthesis we use an example of in-
trusion attack detection. In particular, we focus
on one type of attack called the smurf attack.
The purpose of such an attack is denial of ser-
vice. It may be very harmful since the comput-
ers on the network will not be able to commu-
nicate, or even operate, due to the high traffic
congestion and workload generated by the at-
tack.

The way this attack works is that the attacker
broadcasts (i.e., sends to a whole subnetwork)
an echo request message. According to the pro-
tocol, all the computers that receive such a re-
quest are supposed to reply with an echo re-
ply to the sender. However, the attacker spoofs
the sender’s address, i.e., it uses the address of
another machine. Consequently, the machine
whose address was selected by the attacker (the
target of the attack) starts receiving high vol-
umes of echo reply messages. The attacker may
amplify this effect by sending echo request mes-
sages repetitively to several subnets. The result
is that not only the target machine is saturated
with receiving echo replies, but also whole sub-
nets are saturated with sending echo replies.

While detecting such a form of attack seems
to be easy, the handling of the action must be
done rather carefully. The echo request mes-
sage is a legitimate way of establishing com-
munication with other machines. Care must
be taken to avoid false positives, i.e., declar-
ing that a specific user is an intruder. A sin-
gle echo request message or even a number of
them in rapid succession is not sufficient evi-
dence that a smurf attack is taking place. Sim-
ilarly broadcasts are also not, by themselves,
sufficient evidence for a smurf attack. Any of
these conditions could occur during normal net-
work operations. Information of several kinds
must be combined before a smurf attack can be
reliably detected.

A more sophisticated version of this attack
would involve a number of collaborating intrud-
ers. In such a case each of the intruders could
send an echo request to a subnet infrequently.



This would not look suspicious to an intrusion
detection program. While there are ways of
handling this kind of attack, in this paper we
deal only with the simple version.

6 Sensors

To detect an attack the network must be mon-
itored using some form of sensor. For network
attack detection, the sensors are processes that
run in “promiscuous” mode, i.e., they look in-
side of the headers of all frames of information
being transmitted by a network. The headers
contain information about the communication,
such as the source address, the destination ad-
dress, the time stamp, the size of the content
in the frame, and so on. The role of a specific
sensor is to extract (project) some information
of interest from the headers.

In the experiments described in this paper we
used the tcpdump program to capture header
information, and we used two simple sensors
based on tcpdump. One of the sensors ex-
tracts the source address and the second one
extracts the ICMP message type. There are
many message types, including echo request,
echo reply, time exceeded, and destination un-
reachable. The following is small part of a fil-
tered tcpdump trace:

00:00:05.327 10.1.101.7 > 192.168.15.255 8
00:00:05.327 10.1.101.7 > 192.168.1.255 8
00:00:05.327 10.1.101.7 > 192.168.15.255 8
00:00:05.327 10.1.101.7 > 192.168.1.255 8

Each line of this trace shows some informa-
tion about one instance of communication (one
packet). The first part (e.g., 00:00:05) shows
the time stamp, i.e., the time at which the com-
munication took place. This is followed by the
port number (in this case it was port 327). Then
the source host address is shown (10.1.101.7).
After the bracket the target host address is
shown (192.168.15.255). The last item is the
type of request.

7 Template-based Specification

Templates are structures that include two kinds
of component: constants and variables. An ex-
ample of a template is a tax form, in which the
constant part is printed and the variable parts,
like ones income, need to be filled in. In our
case, we use the MetaSlang language to spec-
ify both templates and concrete specifications.
In MetaSlang one can distinguish abstract and
concrete specifications. A sort is concrete if it is
fully defined in terms of interpreted sorts, such
as integers and strings. A sort is abstract if it is
not concrete. Similarly an operation is concrete

if it is fully specified by axioms, and an opera-
tion is abstract if it is not concrete, e.g., if only
the operation signature is specified. Concrete
sorts and operations correspond to the ‘“con-
stant” parts of a form, while abstract sorts and
operations are the “variable” parts. Filling in a
form replaces the variable parts with constant
values. Refinement is a similar process whereby
abstract sorts and operations are replaced by
compatible concrete ones.

The simplest possible nontrivial spec consists
of a single sort with no ops and no axioms. In
MetaSlang this is written as follows:

T = spec
sort X
endspec

The spec T represents a single abstract datatype
with no specified operations. The following is
an example of spec that has an op:

S = spec

sort A, B

op f: A > B
endspec

The spec S has two abstract sorts A and B, and
a function f from A to B. The sort S is an ab-
straction of a general deterministic computer
program, where A is the set of possible input
values, B is the set of possible output values,
and f is the mapping from inputs to outputs.
Axioms added to S will specify various required
features of the behavior of the program.

One can easily define a morphism from the
spec T to the spec S. In fact, there are two pos-
sible morphisms: the sort X can correspond to
either A or B. The latter morphism is written in
MetaSlang as follows:

ml = morphism T -> S X +-> B

The notation +-> is used to denote a corre-
spondence. In this case, X corresponds to B. A
distinct notation was introduced to avoid con-
fusing correspondences with functions. In the
morphism m1, there is no function from X to B.

One can combine (or fuse) formal specifica-
tions by using the colimit operation. One can
show that every commutative diagram in the
category Spec has a colimit [14]. As a simple
example, suppose that we have a spec R that is
just like S but with sorts C, D and op g. One can
think of R as another computer program. Sup-
pose one also has a morphism m2 from T to R
that corresponds X with C. The two morphisms
ml and m2 define a diagram of morphisms as fol-

lows:
T
VN
S R

The fusion of this diagram is a spec U that has
three sorts and two ops, and the morphisms to



U are in the following commutative diagram:

T

S R

ANV

U

The effect of the fusion could be, for instance,
to unify the output of the first program with the
input of the second program. In other words,
one “feeds” the result of the first program into
the second program, one of the most common
ways to combine programs.

8 Example of Template-based
Specification Synthesis

The specification development proposed in this
paper is based upon the assumption that a li-
brary of templates and diagrams is available for
use by the specifier. In addition, we assume
that a library of concrete specs (or background
knowledge specs) exists and can be incorporated
into the ultimate specification either manually
by the specifier or automatically by a Specifica-
tion Matcher, which we are developing as part
of our research. The specifier first needs to de-
velop a formal specification of the need in terms
of an abstract goal and abstract specifications
of the sensors.

Specification development consists of the fol-
lowing steps.

1. Find a template that matches both the Sen-
sor specs and the Goal spec.

2. Find concrete specs that match the abstract
sensor specs.

3. Refine the abstract template specs.

4. Find concrete specs in the library that need
to be included in the final spec.

5. Perform the colimit operation on the re-
fined template diagram.

6. Refine the resulting spec into code.

7. Test the code and improve on any previous
steps, if necessary.

For the smurf attack example, we will com-
bine three computer programs using the dia-
gram in Fig. 1 which we assume is available in
the library. In this diagram, the specs 53, S2, S,
and S., have the structure of an abstract com-
puter program as in Section 7, i.e., each one has
two sorts and one op with no axioms. The specs
S1 and Sy are the abstract sensor specs, while

S.. S.,
S1 Sw Sa

Figure 1: The specification fusion diagram for the
smurf attack example

S¢, and S, are introduced to enable the proper
unification in the fused specification. The spec
S, is the abstract Goal spec, and it has a more
complex structure than the others because it is
specific to the needs of the particular problem
of detecting attacks from sensor information.
The following is one possible Goal spec:

Swl = spec
sort P, Y, Q1, Q2
op g: P->Y

op s1: P -> Q1

op s2: P -> Q2

op ff1: P -> Q1xQ2

op ff2: Q1xQ2 -> Y

axiom ffA is fa(p:P) ff1(p) = (s1(p),s2(p))

axiom gA is fa(p:P) g(p) = ff2(£f1(p))
endspec

In this specification, the input sort for the
program is written P, and the detector program
is the op g. The sort Y represents the possible
detection answers, such as “attack detected,”
“no attack detected,” and “possible attack de-
tected.” The ops s1 and s2 are the sensor pro-
grams. The two sensor programs are combined
(but not composed) in the op £f1. The asterisk
is used to denote the Cartesian product. Thus
Q1*Q2 is the set of ordered pairs of elements of Q1
and Q2. Axiom ffA defines ff1 to be the func-
tion that maps each input element to a pair
consisting of the two sensor reports. Thus ff1
is a concrete op in this spec, unlike the sen-
sor specs which are just abstract specs. Both
sensor specs become concrete only after all the
specs are fused using the colimit operation. The
op ££2 is the function that determines whether
there is an attack based on the outputs of the
two sensors. The goal program g is computed
by applying ff2 to the result of ffi. This is
stated in axiom gA.

The problem with the Goal spec Swl above is
the presumption that one can detect an attack
by using a single sensor output value. In fact,
most attacks can only be detected by examining
a stream of sensor outputs. To capture this
more sophisticated analysis technique one must
use the following Goal spec:

Sw2 = spec
sort P, Y, Q1, Q2
opg: P->Y



op sl: P -> Q1

op s2: P -> Q2

op F: (P->Q1)*(P->Q2)->(P->Y)

axiom FA is fa(p:P) g(p) = F(s1,s2)(p)
endspec

In this specification the sort (P->Q1) is the set
of all functions from P to Q1. The op F maps
a pair of functions to another function. This
abstracts the notion of combining the results of
two programs. The goal program g is computed
by applying F to the two sensor programs. This
is stated in axiom FA.

The colimit of the diagram in Fig. 1 is re-
fined to a concrete spec in a series of refinement
steps. The first step is to refine the sensor specs
S1 and S> using Sensorl and Sensor2, as follows:

Sensorl = spec

sort Dump, Protocol

op sl: Dump -> Protocol
endspec

Sensor2 = spec

sort Dump, Address

op s2: Dump -> Address
endspec

Note that the sensors extract information from
the individual entries of the tcpdump. How-
ever, a single entry is not sufficient evidence
for a smurf attack as noted earlier. A smurf
attack is a property of the whole list of tcp-
dump entries rather than any particular entry.
Furthermore, neither sensor can detect a smurf
attack by itself.

Having refined the sensor specs, the specifier
searches the sensor library for an appropriate
template. In this step the specifier can use the
Spec Matcher tool. The tool compares the sig-
natures of the abstract specs Sensorl, Sensor2
and Goal to templates in the library. It checks
whether all the necessary sorts and operations
can be matched and then checks whether the
matches map sorts and signatures consistently.
This step should result in finding the template
shown in Fig. 1.

Now the library is searched for concrete sen-
sor specs that match Sensorl and Sensor2.
Again, the Spec Matcher tool can be used here.
The result is the following sensor specs: Ad-
dressSensor and ProtocolSensor. Due to space
limitations we show only a part of the Proto-
colSensor spec.

ProtocolSensor = spec
sort Protocol
sort TracelLine = String
sort Dump = List TraceLine
sort ProtSeq = List Protocol
op protTypeSeq: Dump -> ProtSeq
def protTypeSeq(d) = map protocolType d

op protocolType: TraceLine -> Protocol
def protocolType(tr) = stringToProtocol
(getProtocolString(tr))
endspec

In the next step the template is instantiated
with the concrete sensor specs. This instantia-
tion is represented by morphisms between ab-
stract sensor specs and concrete sensor specs
and the composition of these morphisms. The
result is a refinement of the template. As an ex-
ample, the following is the morphism from the
abstract sensor Sensor2 to the ProtocolSensor:

Sensor2_ProtocolSensor =
morphism Sensor2 -> ProtocolSensor
{P +-> Dump, Protocol +-> ProtSeq,
s2 +-> protTypeSeq}

Then the library is searched for specs that
need to be imported into the refined template
so that the abstract Goal can be refined to a
concrete spec. Again, the Spec Matcher tool
can be used here. In our example, the con-
crete specs that need to be imported and then
translated are IPv4Addrs and Protocols. At this
time the colimit operation can be invoked. This
functionality is supported by Specware and thus
does not require too much involvement by the
specifier beyond simply requesting it. The out-
come is a complete spec. In our case the spec
was 287 lines long, so it is not possible to show
this spec in this paper.

9 Code Generation

The final step is code generation. This opera-
tion, again, is supported by Specware. So all we
need to do is to invoke the :swl command on the
final spec. Specware generates Lisp code. For
this example 1016 lines of code were generated.

We then were able to run this lisp code and
see that it performed according to specifica-
tions. Here is an example of the invocation of
the program and the result (we used an example
that bases the detection decision only on two
lines, but the program can accept any number
of lines). In the first case there is no smurf at-
tack; it is indicated by “NIL” given as output.
In the second case, on the other hand, there is
an attack, indicated by the “T”.

[1] SW-USER(51): (SmurfAttack? ’(
"00.00:05.327 spoofed.target.com >
192.168.15.255: icmp: echo request"
"00.00:05.327 spoofed.target.com >
129.11.1.255: echo request"))
NIL

icmp:

[1] SW-USER(52): (SmurfAttack? ’(
"00.00:05.327 spoofed.target.com >
192.168.15.255: icmp: echo request"



"00.00:05.327 spoofed.target.com >
192.11.1.255: echo request"))
T

icmp:

10 Conclusions

The main point that we wanted to address in
this paper is that of automating the most diffi-
cult part of information fusion — algorithm de-
velopment — by the computer. We proposed
to use a formal method approach in which a
formal specification is developed first and then
code is generated by a computer tool. In such
a case, the automation focus is on the specifi-
cation step. Towards this aim, we are develop-
ing a tool — Spec Matcher — that will help the
specifier to perform semi-automatic specifica-
tion development. In this paper we outlined all
the necessary steps of such a process. For this
purpose we used an intrusion detection example
(detection of the smurf attack). The steps have
been formalized in the MetaSlang language and
verified, including automatic code generation,
using the Specware formal specification tool.

Acknowledgments

This research was inspired by a grant from the
Air Force Office of Scientific Research under
contract No: F49620-98-1-0043 and by a grant
from Air Force Research Laboratory, Rome,
NY under contract No: AFRL-IF-RS-TR-1999-
240. The authors wish to express their spe-
cial thanks to Robert Paragi from AFRL for
his help with the idea of using the information
fusion approach to intrusion detection.

References

[1] A. N. Steinberg and C. L. Bowman. Revision
to the JDL data fusion model. In D. L. Hall
and J. Llinas, editors, Handbook of Multisensor
Data Fusion, pages 2-1 — 2-19, CRC Press,
2001.

T. Gruber. What is an ontology? 2006.
www-ksl.stanford.edu/kst/what-is-an-ontology.
html.

Joaquin Miller and Jishnu Mukerji (Eds.).
MDA Guide, Version 1.01. Technical Report
omg2003-06-01, OMG, 2003.

(2]

(3]

(4]

C. P. Pfleeger. Security in Computing. Prentice
Hall, 2003.

D. L. Hall and J. Llinas.
multisensor data fusion.
85, No. 1:6—23, 1997.

An introduction to
IEEE Transactions,

(5]

[6] R. A. Kemmerer. Integrating formal methods
into the development process. IEFE Software,

9:37-50, 1990.

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Formal methods specification and verification
guidebook for software and computer systems.
Technical Report NASA-GB-002-95, National
Aeronautics and Space Administration, 1995.

Martin D. Fraser, Kuldeep Kumar, and Vi-
jay K. Vaishnavi. Strategies for incorporating
formal specifications. Communications of the
ACM, 37, No.10:74—85, October 1994.

J. M. Wing. A specifier’s introduction to for-
mal methods. IEEE Computer, 9:8—-24, 1990.

J. Rushby. Formal methods and the certifi-
cation of critical systems. Technical Report
CSL-93-7, SRI International, 1993.

J.C.P. Woodcock. The rudiments of algorithm
refinement. The Computer Journal, 35(5):441—
450, 1992.

B. C. Pierce. Basic Category Theory for Com-
puter Scientists. MIT Press, 1991.

Specware 4.0 user manual.
Kestrel Institute, 2003.

Technical report,

J. Goguen. Categorical foundations for general
systems theory. Advances in Cybernetics and
System Research, pages 121-130, 1973.

J. A. Tomasik and J. Weyman. Category
semantics for fusion and renement of multi-
sorted specications. In Proceedings of Fu-
ston’2006, International Conference on Infor-
mation Fusion, 2006.

D. Sannella and A. Tarlecki. Essential con-
cepts of algebraic specification and program
development. Formal Aspects of Computing,
9:229-269, 1997.

S. A. DeLoach and M. M. Kokar. Category
theory approach to fusion of wavelet-based fea-
tures. In Proceedings of the Second Interna-
tional Conference on Information Fusion, Vol.
1, pages 117-124, 1999.

M. M. Kokar, J. A. Tomasik, and J. Weyman.
A formal approach to information fusion. In
Proceedings of the Second International Con-
ference on Information Fusion, Vol. 1, pages
133—-140, 1999.

M. M. Kokar, J. A. Tomasik, and J. Wey-
man. Data vs. decision fusion in the category
theory framework. In Proceedings of FUSION
2001 - 4th International Conference on Infor-
mation Fusion, Vol. 1, pages TuA3-15 — TuA3—
20, 2001.

M. M. Kokar, J. A. Tomasik, and J. Weyman.
Formalizing classes of information fusion sys-
tems. Information Fusion: An International
Journal on Multi-Sensor, Multi-Source Infor-
mation Fusion, 5,3:189-202, 2004.



