

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 944 – 958, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Application of Semantic Web Technologies
to Situation Awareness

Christopher J. Matheus1, Mieczyslaw M. Kokar 2,
Kenneth Baclawski2, and Jerzy J. Letkowski3

1 Versatile Information Systems, Inc. Framingham, Massachusetts USA
cmatheus@vistology.com
http://www.vistology.com

2 Northeastern University Boston, Massachusetts USA
ken@baclawski.com mkokar@ece.neu.edu

3 Western New England College, Springfield, MA, USA
jletkows@wnec.edu

Abstract. Situation awareness involves the identification of relationships
among objects participating in an evolving situation. This problem in general is
intractable and thus requires additional constraints and guidance defined by the
user if there is to be any hope of creating practical situation awareness systems.
This paper describes a Situation Awareness Assistant (SAWA) based on Se-
mantic Web technologies that facilitates the development of user-defined do-
main knowledge in the form of formal ontologies and rule sets and then permits
the application of the domain knowledge to the monitoring of relevant relations
as they occur in a situations. SAWA includes tools for developing ontologies in
OWL and rules in SWRL and provides runtime components for collecting event
data, storing and querying the data, monitoring relevant relations and viewing
the results through a graphical user interface. An application of SAWA to a
scenario from the domain of supply logistics is presented along with a discus-
sion of the challenges encountered in using SWRL for this task.

1 Introduction

The essence of situation awareness lies in the monitoring of various entities and the
relations that occur among them. Since the properties of relations, unlike the proper-
ties of objects, are not directly measurable, one needs to have some background
knowledge (such as ontologies and rules) to specify how to derive the existence and
meaning of particular relations. For instance, in the domain of supply logistics,
 relations like “suppliable” or “projected undersupply within 2 days” need to be sys-
tematically specified. The number of potentially relevant relation types is practically
unlimited. This presents a great challenge to developers of general-purpose situation
awareness systems since it essentially means that such systems must have the poten-
tial to track any possible relation. In other words, the relation determination
algorithms must be generic, rather than handcrafted for each special kind of relation.
Furthermore, in order to derive a specific relation one often needs to access a number
of data sources and then combine (i.e., fuse) their inputs. One way to address these
challenges is to use generic reasoning tools, such as those based on the principles

 An Application of Semantic Web Technologies to Situation Awareness 945

being employed by the Semantic Web. To take advantage of this approach, however,
all information must be available in a formally defined knowledge base.

At Versatile Information Systems, Inc., we are developing a collection of flexible on-
tology-based information fusion tools needed for identifying and tracking user-defined
relations. These tools collectively make up our Situation Awareness Assistant (SAWA).
The purpose of SAWA is to permit the offline development of problem specific domain
knowledge and then apply it at runtime to the fusion and analysis of object-level data.
Domain knowledge is captured in SAWA using OWL ontologies for describing the
classes and properties of the domain and SWRL rules for defining the conditions of
higher-order relations. The user controls the system situation monitoring requirements
by specifying “standing relations”, i.e., high-level relations or queries that the system is
to monitor. SAWA provides a flexible query and monitoring language based on OWL-
QL that can be used to request information about the current situation or to conduct
what-if queries about possible future situations. In this paper we describe the structure
and capabilities of SAWA and show its use on examples from the supply logistics do-
main. In particular, we show how to develop an appropriate ontology and associated
rules, how SAWA collects and processes incoming events and how it communicates
with the user. We also discuss the advantages and limitations of applying Semantic Web
technologies to the problem of situation awareness.

2 General Approach

We view situation awareness as a fusion problem involving the identification and
monitoring of higher-order relations among object-level objects. As mentioned in the
introduction, practical solutions to this problem require user-defined constraints,
which we usually identified with a corpus of knowledge specific to a domain of inter-
est, otherwise known as domain knowledge. The use of domain knowledge requires a
form of representation and a means for processing or reasoning about the knowledge
representations. Rather than developing ad hoc representations we advocate the lev-
eraging of existing standards. We also believe strongly in the value of formal repre-
sentations that can be used in conjunction with generic yet formal reasoning systems.
Our approach to domain knowledge representation, which we will describe shortly, is
thus premised on use of standards-based formal representations.

Even with appropriate domain knowledge the number of possible relations defin-
able within the domain knowledge constraints can remain intractable. To further
constrain a situation we believe it is necessary to know something about the user’s
specific goals. By knowing more specifically what the user is looking for, automated
systems can focus attention on just those events and candidate relations that are rele-
vant. Our process for relevance reasoning has been reported elsewhere [1] and will
not be explained in detail in this paper. We will summarize, however, by saying that
relevance reasoning takes a standing relation (i.e. a goal) from the user, identifies the
portion of the domain knowledge that is relevant to the standing relation, finds the
attributes in the domain knowledge that must be grounded in input events and uses
these attributes to identify what types of objects and which of their attributes need to
be monitored in the event stream. With this mechanism, the large number of objects
and attributes in a situation can be pared down to a more manageable stream of data
in which only a comparatively small number of relevant relations must be monitored.

946 C.J. Matheus et al.

2.1 Ontology Representation in OWL

In our current efforts we have been exploring the use of recent developments for the
Semantic Web [2]. In particular we have chosen to use the OWL Web Ontology
Language [3] for defining ontologies that serve as the basis for data and knowledge
representation within our situation awareness systems. The advantages of using OWL
includes the fact that it is defined by a formal set of semantics and that there are a
growing number of automated systems to formally process OWL documents, includ-
ing editors, consistency checkers and reasoning engines [4].

OWL was designed to capture the classes, properties and restrictions pertinent to a
specific domain. As such, OWL can capture basic class hierarchies, properties among
classes and data and simple constraints on those properties and classes. OWL, how-
ever, cannot capture all types of knowledge relevant to a given domain. In particular,
it does not provide a way to represent arbitrarily complex implications, in which
knowledge of the existence of a collection of facts (X1, X2…Xn) implies the truth of
some other information (i.e., X1 Λ X2 Λ…Xn →Y). For example, there is no way in
OWL to define the relationship of “uncle(X,Y)” which requires knowing that X is
male, X has a sibling Z, and Z has a child Y. The joining of collections of interrelated
facts into implication rules as illustrated in this example is very common when defin-
ing relationships important to domains involving situation awareness. We therefore
need the ability to define portions of our domain knowledge using a rule language,
and for this purpose we have selected the Semantic Web Rule Language, SWRL [5].

2.2 Rule Representation in SWRL

SWRL is built on top of OWL and, like OWL, has a formally defined semantics,
making it a natural choice for use in our situation awareness applications. SWRL
does, however, have some shortcomings that make it less than ideal. Because it was
officially introduced as a draft recommendation in just the spring of 2004, it is rela-
tively new and is still evolving; this means there are few tools and applications for use
with SWRL and it remains a moving target which may undergo radical changes that
will introduce inconsistencies for early adopters. Furthermore, SWRL requires the
use of binary predicates. While it is possible to represent concepts dependent on
higher-arity relations using SWRL, the process of doing so significantly complicates
the resulting rules, making them difficult to read and maintain. As an example con-
sider the concept of a “part” at a “facility” being in “critical supply” at a particular
“time”, meaning there is a greater need for the part than the number of units available.
What we would like to do is create a rule with a predicate of the form criticalPartAt-
Facility(?Part,?Facility,?Time,?DeficitAmount)1 as its head and additional predicates
in the body that define the conditions under which this predicate should be deemed to
be true. To do this in SWRL we need to convert this four-term predicate into an in-
stance of a class (fabricated solely for this rule) that is the domain of four properties,
one for each of the four terms.

In the nine rules for our Repairable Assets scenario in which we monitor for criti-
cal and marginal parts at a number of airbases this technique was employed nine

1 Variables in the examples of SWRL code presented in this paper are indicated by being pref-

aced with a question mark, such as in ?Facility.

 An Application of Semantic Web Technologies to Situation Awareness 947

times and was usually repeated in the head and bodies of multiple rules. The need for
this technique contributed greatly to the more than 1000 lines of SWRL code required
to implement these nine relatively simple rules; this in turn made the debugging of the
code very tedeous. Still, the advantages of SWRL – primary its formal semantics and
its close association with OWL – were enough to encourage us to continue with our
exploration of its use for situation awareness.

Fig. 1. SAW Core Ontology. This ontology serves as the basis for all domain specific ontolo-
gies and rule sets. According to the ontology a Situation consists of Objects and Relations and
a Goal (standing relation). Objects have AttributeTuples that are associated with specific At-
tributes and a collection of AttributeValues defined according to ExternalEvents. Relations are
realized through RelationTuples that connect pairs of Objects with RelationValues defining by
the firing of Rules.

2.3 SAW Core Ontology

We are interested in building systems for situation awareness that are generic in na-
ture. That is to say that the systems should be applicable to a wide variety of problem
domains simply through the redefinition of the domain knowledge that they use. For
this approach to work, some core concepts need to be established that will be used as
the basis for the development of specific domain knowledge ontologies and rule sets.
For this reason we have developed a SAW Core Ontology that serves as the represen-
tational foundation of all domain knowledge that is built on top of it. We have re-
ported on this core ontology in earlier papers [6] and will not describe it in detail here.
A simplified version of the ontology is shown in Fig. 1 with the key concepts being

948 C.J. Matheus et al.

use of objects that have attributes with specific values being defined by external
events that occur over time; in addition, relations combine pairs of objects with truth
values defined over time by the firing of rules that define the relations.

3 SAWA High-Level Architecture

The SAWA High-Level Architecture has two aspects as shown in Fig. 2: a set of
offline tools for Knowledge Management and a Runtime System of components for
applying the domain knowledge to the monitoring of evolving situations. The knowl-
edge management tools include an ontology editor, an ontology consistency checker
and a rule editor. The runtime system consists of a Situation Management Compo-
nent (SMC), an Event Management Component (EMC), a Relation Monitor Agent
(RMA), a Triples DataBase (TDB) and a Graphical User Interface (GUI).

Fig. 2. SAWA High-Level Architecture. On the left side of the diagram is the Knowledge
Management suite of tools used to develop the domain knowledge that serves as input to the
Runtime System, shown on the right hand side. The user interacts with the system through the
GUI by issuing standing relations (goals) and queries. Events from the outside world come into
the runtime system and are processed for redistribution to other components by the Event Man-
agement Component (EMC).

4 SAWA Knowledge Management

Knowledge Management in SAWA is handled by a loosely coupled suite of tools for
developing and maintaining OWL ontologies and SWRL rule sets.

4.1 Ontology Editor

The OWL language is based in RDF [7], which has an XML-based representation.
As such, any text or XML editor could be used to develop OWL ontologies. The

 An Application of Semantic Web Technologies to Situation Awareness 949

manual coding of OWL is, however, tedious and prone to error, making specialized
editors highly desirable. There are a number of editors available for OWL [8] but the
most widely used is Protégé [9]. Protégé is a general-purpose ontology management
system developed long before OWL but for which OWL plug-ins have been devel-
oped. Using Protégé with the basic OWL plug-in permits the use of Protégé’s frame-
based editor to construct OWL classes, properties and restrictions among them as well
as to develop annotations for OWL ontologies. This approach is adequate but not as
convenient as a graphical editor that allows the visual display and manipulation of the
relations between objects and properties. Fortunately there is a plug-in for Protégé
called ezOWL that provides a graphical editor on top of the basic OWL-plugin. All
of the ontologies depicted in this paper are screenshots taken from ezOWL. EzOWL
has its limitations (for example it does not cleanly display more than two properties
between two classes) and does not always produce correct OWL code, but it is cur-
rently the best available visual editor for OWL and does a satisfactory job, provided
the resulting code is checked for consistency.

4.2 Consistency Checker

Developing an accurate and consistent ontology is not easy, particularly as the com-
plexity of the domain increases. For all but the most trivial problems it is imperative
that newly constructed ontologies be automatically validated for logical consistency;
this is also invaluable when combining multiple ontologies that may individually be
consistent but are collectively incompatible. It has been the authors’ experience that
seldom is the first design of an ontology complete and consistent, and the use of con-
sistency checking tools has saved tremendous amounts of development time. SAWA
includes ConsVISor [10], an OWL/RDF consistency checker, in its suite of knowl-
edge management tools. ConsVISor is both a standalone Java application and a free
Web Service available. at http://www.vistology.com/consvisor.

ConsVISor’s purpose is to analyze OWL and RDF documents looking for symp-
toms of semantic inconsistencies. Not only does it detect outright semantic violations,
it also identifies situations where logical implications have not been fully specified in
a document. For example, if an ontology places a minimum cardinality constraint on
a property for a specific class and an instance of that class is created without having
the minimum number of property values, an informative message is provided as
shown. Emphasis is placed on providing highly informative feedback about detected
symptoms so as to aid the correction of underlying errors by the human user. Cons-
VISor’s output however is based on an OWL-based Symptom Ontology [11] and as
such can produce symptom reports in OWL that can be automatically processed by
other OWL-cognizant programs.

4.3 Rule Editor

SWRL rules in their XML representation are syntactically and (frequently) semanti-
cally difficult to read and write. It was therefore decided that SAWA needed an easy
to use editor to assist in the construction and maintenance of SWRL rules. With
SWRL being so new, there were no SWRL editors available and so we decided to

950 C.J. Matheus et al.

Fig. 3. RuleVISor. This screenshot of the RuleVISor SWRL editor shows its use on a set of
rules used by the Supply Logistics scenario described in Section 6.

implement one, which we are calling RuleVISor. A screenshot of RuleVISor being
used on a rule set for the Supply Logistics scenario described in Section 6 is shown in
Fig. 3. The rules are displayed along the top left hand side of the editor in a directory
style layout for easy selection and high-level scanning. The rule that is currently
being edited appears in two forms in the right-hand section of the editor. At the top of
this section is the display of the contents of the rule head and body in either an easy to
read atomic form, which is shown in the screenshot, or as raw SWRL code (not
shown). Below this display is the section where editing of the rule takes place, in-
cluding the optional naming of each rule. This section is split into a portion at the top
for editing the head followed by a portion for editing the body. Within either of these
the user has the option of adding or deleting binary atoms, atomic atoms, instances,
data value ranges and built-in functions simply by clicking on the appropriate icons.
Each clause in a rule head or body appears in a three row region that provides the
name of the atom, the terms it operates over and possibly other constraints such as
term type restrictions. The values of the terms can either be typed in by the user or
dragged from other areas of the editor. The primary source for dragged items is the
Ontology Tree that appears in the lower left hand corner.

The Ontology Tree displays the contents of the ontologies upon which a rule set is
to be built. Of most interest here are the Classes and Properties of the ontology,
which are used to populate the term slots of atoms used in the rule heads and bodies.
Class and Property names may be dragged to any text entry box in the editor but they
will only be accepted by the box if the value being dragged matches the type that the
box expects. This form of primitive type checking represents the beginning of a much

 An Application of Semantic Web Technologies to Situation Awareness 951

more sophisticated policy for consistency checking based on ConsVISor that is
planned for a future version of RuleVISor.

5 SAWA Runtime System

The SAWA Runtime System, also called the SAWA Engine, is depicted in Fig. 4
along with the communication channels between its sub-components. SAWA is im-
plemented in Java, includes Jess as the basis for its reasoning functions and uses our
proprietary RDF/OWL/XSD parser. The SAWA Engine consists of the following
sub-components: the Situation Management Component (SMC) which is the sys-
tem’s central controller, the Event Management Component (EMC) which processes
all incoming events, the Relation Monitoring Agent (RMA) which monitors relevant
events for the status of relations occurring in the evolving situation, the Triples Data-
Base (TDB) which maintains a historical record of all situation events and permits the
processing of queries, and the Graphical User Interface (GUI) which handles all user
interaction with the system. The function of each of these components is described
further in the subsections that follow.

Fig. 4. SAWA Runtime System

5.1 Situation Management Component

The Situation Management Component (SMC) is the central controller for SAWA. It
interacts with the GUI to provide options to the user and to accept the user’s com-
mands to start, stop and query situations. In addition, it serves as the communication
channel between the GUI and the TDB and RMA. The SMC initializes the monitor-
ing of situations by instructing the EMC to start listening to specific event streams
and informs the RMA, TDB and GUI how to connect to the EMC to receive their
appropriate streams of processed events. The SMC is also responsible for performing

952 C.J. Matheus et al.

relevance reasoning, which is achieved through the application of XSLT scripts, and
for passing the appropriate set of relevant rules to the RMA and the set of relevant
objects and attributes to the EMC.

Fig. 5. Event Ontology. Simple ontology used to represent incoming events for processing by
the EMC. Each Event describes one or more Objects each having one or more Attributes for
which a value and certainty measure are defined.

5.2 Event Management Component

The Event Management Component (EMC) receives streams of raw event data and
converts them into appropriate streams of events for the GUI, RMA and TDB. Each
of these components receives a specific type of event stream: the RMA only receives
relevant events encoded as Jess-formatted triples; the TDB receives all events in the
form of OWL triples; the GUI receives relevant events in the form of object-attribute
instances. The raw input streams are expected to be annotated using an event ontol-
ogy with references to objects defined in the core ontology and the appropriate
domain ontology. The event ontology currently being used in SAWA is shown in
Fig. 5. This event ontology is known only to the EMC which converts all event infor-
mation into appropriate structures for the other components; the isolation of the other
components from the event ontology was done so as to permit the use of other event
ontologies dependent upon the source of the event streams (which at this time is a
simulator of fused object-level data).

5.3 Relation Monitoring Agent

The Relation Monitoring Agent (RMA) performs the task of monitoring the stream of
relevant events and detecting the truth value of relevant relations that might exist
between objects occurring in the evolving situation. The RMA performs this task
using the relevant rules defined by the domain knowledge in conjunction with the
standing relation. These relevant rules are converted from their SWRL representation
into Jess rules using an XSLT script. The Jess rules are then processed in the for-
ward-chaining Rete network of our enhanced Jess inference engine; some of the
enhancements we have made to Jess include the support for over thirty of the SWRL
built-ins which are implemented as procedural attachments in the form of Java
method calls. As events come in, they are processed through the Rete network and as
a result may end up firing one or more rules. The firing of a rule results in the instan-
tiation of a relation that is then reported to the GUI via the SMC. At the moment all
rule firings result in relations that have an associated certainty rating of 1.0 (i.e.,
100%). We are working on a new implementation of the reasoning engine that will
incorporate uncertainty reasoning and will thus afford the detection of relations hav-
ing incomplete certainties.

 An Application of Semantic Web Technologies to Situation Awareness 953

5.4 Triples Database

In RDF and OWL all information is represented in the form of triples. Each triple
represents a predicate that relates a subject to an object. For example, to state that S2
is a SupplyStation requires a triple of the form: S2 rdf:type SupplyStation. More com-
plex knowledge structure can be represented using collections of interrelated triples
[12]. The triples representing the domain knowledge, user input and the incoming
events all need to be maintained in a way that they can be readily processed. In
SAWA this is accomplished through the Triples DataBase (TDB).

The TDB’s primary purpose is to maintain an accurate history of all events so that
they can be queried by the user at any time. It is currently developed on top of Jess
and makes use of Jess’ built-in query capabilities to implement an engine for OQL:
OWL Query language [13]. The TDB also supports “what-if” queries in which a set
of hypothetical facts are asserted, a query is run to produce what-if results, and the
hypothetical facts are retracted along with all facts deduced from them. The TDB
accomplishes this what-if capability using the “logical” retraction feature of Jess.
While both the general query mechanism and the what-if query mechanism work as
designed, they are quite inefficient and not particularly suited for new real-time opera-
tions. Consequently we are in the process of developing our own inferencing and
query engine optimized for the processing of triples.

Fig. 6. The SAWA GUI

954 C.J. Matheus et al.

5.5 Graphical User Interface

The Graphical User Interface permits the user to define standing relations, execute
queries and monitor the current state of events, objects, attributes and relations. Its
use on a Supply Logistics scenario (described in the next section) is illustrated in
Fig. 6. The GUI provides the means for specifying the standing relation (i.e., goal),
executing queries, and monitoring the evolution of events, objects, attributes and
relations. Objects and attributes are displayed in the Situation Object Table and also
on the Situation Object Map. Relevant relations appear in the Relevant Relations
table as well as in the Relevant Relation Diagram. Clicking on objects on the map or
events, objects or relations in the tables brings up a sub window of supplemental in-
formation as shown in the figure for Unit B8. The dials in the upper right hand corner
are used for monitoring the performance of the inferencing engine.

6 A Supply Logistics Scenario

SAWA is currently being applied to the domain of supply logistics for which we have
developed two scenarios, supply line and repairable assets. In this section we focus
on the first scenario that was constructed for the purposes of demonstrating the basic
system functions. The goal or “standing relation” for this scenario is to constantly
monitor the relation “hasSupplyLine” for all friendly units. A supply line is defined
as the existence of a continuous path of roads under friendly control connecting a unit
(e.g., B5, B6, etc.) to a supply station (e.g., S1). The specific layout for this scenario
can be seen in the map display in the GUI screenshot in Fig. 6. Roads connect pairs of
regions (their centroids indicated by solid dots). There are six friendly blue units (i.e.,
B5, B6, B7, B9 and S1), including one supply station (S1), and one unfriendly red
unit (R1).

The screenshot in Fig. 7 shows the simple supply logistics ontology that goes along
with this scenario. Note that all of the classes in this ontology are implicitly sub
classes of the Object class in the SAW Core Ontology described in Section 2.2 – this
is necessary for the domain specific ontology to work with the otherwise generic
mechanisms of the SAWA Engine. Note also that this ontology is a gross simplifica-
tion of what would be expected for a more complete ontology necessary to support
more practical supply logistics scenarios (which the authors are currently working
on). This ontology was created using ezOWL, which produced the screenshot shown
in Fig. 7 as well as the OWL code used in the running of the scenario.

The rule set developed for this scenario is partially shown in the screenshot of
RuleVISor in Fig. 3. These rules define that a unit hasSupplyLine if the unit is in a
region that isSuppliable. A region isSuppliable if it hasSupplyStation and is under-
FriendlyControl or if it is connected to another region by a Passable road and that
other region isSuppliable. A region is underFriendlyControl if it contains a friendly
unit. A region hasSupplyStation if the region contains an object and that object is a
supply station (note that this rather obvious sounding rule is an implication that can-
not be readily captured in OWL alone).

To simulate the running of the scenario several snapshots where developed as
OWL annotations to define the state of the world at sequential time slices. In each
time slice one of the units was moved around in such a manner as to create changes in

 An Application of Semantic Web Technologies to Situation Awareness 955

the set of relations that would hold true. These snapshots where then presented to a
running SAWA application in which the user specified the standing relation to be
hasSupplyLine as applied to all friendly units. The system correctly detected the
standing relations that held true at each time slice and reported these back to the GUI
which displayed them for the user; the GUI screenshot in Fig. 6 shows the display
after a couple of time steps.

Fig. 7. Simple Supply Logistics Ontology. This ontology captures just enough information
needed for reasoning about supply lines, which serves as the standing relation in our supply
logistics scenario. Each of the classes represented in the ontology is a subclass of the Object
class defined in the SAW Core Ontology shown in Fig. 1.

7 Semantic Web Technologies for Situation Awareness

The representational and reasoning requirements for Situation Awareness share much in
common with those of the Semantic Web, with an added emphasis on the handling of
time and uncertainty. Both need to be able to represent object-level information con-
cerning classes and properties as well as higher-order relations that can occur among
specific instances (e.g., a web site and its content, a web service and the set of users
permitted to access it, etc.). Given our experience with using Semantic Web technolo-
gies it is natural to ask how well they fared when applied to Situation Awareness.

We have found the use of OWL to be generally quite suitable for representing tax-
onomies of classes and for capturing most of the properties of interest. There have
been cases where we would have liked to have been able from within OWL to further
constrain certain properties based on the values of other properties but instead were
forced to use a rule. This is a well-known limitation of OWL [14] and is something
that we have no problem with resorting to SWRL to resolve.

With regards to the use of SWRL there are a number of issues that we encountered
(for more details see [15]). The lack of higher-order predicates is the most severe and
was already illustrated in Section 2.2. Another issue we had to deal with was the
declarative definitions of the SWRL built-ins. SWRL built-ins are defined without
specification of the input/output nature of their terms. For example,
swrlb:add(100,?X,?Y) is a perfectly valid use of the SWRL add built-in even though
it defines an infinite set. It is also possible to use it in the following manner to im-
plement subtraction, swrlb:add(100,50,?X), even though swrlb:subtract is also defined
by the language. In practice “add” is generally needed as a function that binds to the

956 C.J. Matheus et al.

variable in the first term position the summation of the remaining bound terms. In our
implementation of the built-ins for Jess we require that there only be a single unbound
variable and then use its occurrence in the list of terms to determine which function is
to be used to calculate its value (this means you can, if you wish, use swrlb:add to
perform subtraction); if more than one term is unbound an exception is thrown. This
approach is not strictly conformant with the definition of SWRL but it represents a
pragmatic approach that satisfies the requirements of a large number of problems.

Most rule languages have some mechanism for explicitly asserting new facts into
working memory; in Jess this is achieved using (assert …). There is no such con-
struct in SWRL. Rather, SWRL only states that when the statements in the body of a
true are all true then the statements in the head are also true. The natural interpreta-
tion of this from the context of an inference engine like Jess is that the statements in
the head should be asserted into working memory, for otherwise these true statements
would be inaccessible by any of the other rules. For this reason we translate the
statements in the heads of rules into assert commands in Jess. We go one step further
in that we also look for the occurrence of variables in the head that are unbound in he
body and produce a “gensym” command to generate a new symbol to produce an
anonymous object to fill the role played by the variable. Technically the occurrence
of a variable in the head that is not bound in the body is prohibited in SWRL (these
are referred to as unsafe rules owing to the existentially quantified variables in their
heads). In practice it is very frequently necessary to construct anonymous objects of
this sort and yet SWRL has no construct for doing so (i.e., it has no gensym operator).

SWRL also lacks user-defined procedural attachments, which greatly reduces it
general usefulness in practical applications. There are many calculations that are
simply more appropriately handled by writing a method in Java (or any other proce-
dural language) than to force its computation using rules alone. In situation aware-
ness applications this comes up in such tasks as calculating the aggregation of a set of
objects into a group, finding the centroid of a set of objects, dynamically modeling the
position of a moving object over time, etc.

Perhaps the most restrictive aspect of SWRL is its lack of negation and in particu-
lar negation as failure. In all of our rule-based applications we have encountered the
need to use a closed world assumption when reasoning about the information at hand.
Seldom in the real world is it the case that we will have all of the timely information
needed to make a conclusion; we must therefore be able to write rules that can detect
the absence of specific forms of information and make decisions accordingly. In
SWRL there is no way to look for the absence of information owing to its strict ad-
herence to the monotonic assumption inherited from OWL. In our SWRL applica-
tions we have been forced to violate this assumption and move outside of the lan-
guage in order to fully represent the knowledge needed to define some of our rules.

8 Conclusion

This paper described the Situation Awareness Assistant, SAWA. SAWA is designed
to monitor the evolution of higher-order relations within a situation using formal and
generic reasoning techniques for level-two fusion. The system was developed to
make use of the formal languages of OWL and SWRL, which permit the representa-

 An Application of Semantic Web Technologies to Situation Awareness 957

tion of ontologies and rules. For a specific application of SAWA, a domain theory
consisting of a domain specific OWL ontology and a corresponding set of SWRL
rules are first constructed or reused from a previous application. A standing relation,
or goal, is then defined by the user, which is used to determine the relevant portion of
the domain knowledge for the current objectives as well as to identify the relevant
object and object-attributes that the system needs to monitor in the event stream. As
relevant events are detected they are passed on to the relation-monitoring agent,
which analyzes them for the possible occurrence of higher-order relations. As higher-
order relations are detected they are passed onto the GUI, which displays them in both
tabular and graphical forms for the user along with other data pertaining to the events,
objects and their attributes. The GUI also provides the capability for querying the
system’s triple database using basic OQL queries or with “what-if” queries that can
produce hypothetical situations against which a query is run. A scenario from the
domain of supply logistics was briefly described and we high-lighted some of the
issues we encountered in our effort to apply Semantic Web technologies to the prob-
lem of Situation Awareness.

References

1. C. Matheus, K. Baclawski and M. Kokar, Derivation of ontological relations using formal
methods in a situation awareness scenario. In Proc of SPIE Conference on Multisensor,
Multisource Information Fusion, pages 298-309, April 2003.

2. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web: A new form of Web con-
tent that is meaningful to computers will unleash a revolution of new possibilities. Scien-
tific American, May 2001.

3. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Ref-
erence. W3C Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/

4. http://www.w3.org/2004/OWL/.
5. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean. SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission,
2004. http://www.w3.org/Submission/SWRL/.

6. C. Matheus, M. Kokar and K. Baclawski, A Core Ontology for Situation Awareness. In
Proceedings of FUSION’03, Cairns, Queensland, Australia, pages 545-552, July 2003.

7. G. Klyne, J. J. Carroll, and B. McBride, Resource Description Framework (RDF) Con-
cepts and Abstract Syntax.. W3C Recommendation 10 February 2004. Latest version is
available at http://www.w3.org/TR/rdf-concepts/

8. European OntoWeb Consortium, A Survey of Ontology Tools, May 2002.
http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip.

9. J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F.
Noy, S. W. Tu The Evolution of Protégé: An Environment for Knowledge-Based Systems
Development. 2002.

10. ConsVISor, 2003. http://www.vistology.com/consvisor. See also K. Baclawski, M. Kokar,
R. Waldinger and P. Kogut, Consistency Checking of Semantic Web Ontologies. 1st In-
ternational Semantic Web Conference (ISWC)}, Lecture Notes in Computer Science,
LNCS 2342, Springer, pp. 454--459, 2002.

958 C.J. Matheus et al.

11. K. Baclawski, C. Matheus, M. Kokar, J. Letkowski and P. Kogut, Towards a Symptom
Ontology for Semantic Web Applications. In Proceedings of Third International Semantic
Web Conference, Hiroshima, Japan, pages 650-667, November, 2004.

12. RDF Primer. W3C Working Draft. Edited by F. Manola and E. Miller, 2002.
http://www.w3.org/TR/rdf-primer/

13. OQL: OWL Query Language, 2003.
14. M. K. Smith, Web Ontology Issue Status, 2003. http://www.w3.org/2001/sw/WebOnt/

webont-issues.html#I3.2-Qualified-Restrictions
15. C. Matheus, Position Paper: Using Ontology-based Rules for Situation Awareness and In-

formation Fusion. W3C Workshop on Rule Languages for Interoperability, Washington,
D.C., April 2005. http://www.w3.org/2004/12/rules-ws/paper/74

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

