SAWA: An Assistant for Higher-Level Fusion and Situation Awareness

Christopher J. Matheus, Mieczyslaw M. Kokar, Kenneth Baclawski, Jerzy A. Letkowski, Catherine Call, Michael Hinman, John Salerno, Douglas Boulware

SAW Process

SAW Assistant (SAWA)

Supply Logistics Scenario

- Scenario for supplying units using ground transports via roads that may not be under friendly control
- Configuration files control types and quantities of resources, transports, suppliers and consumers
- Generates events based on our SAW Core, Supply Logistics and Event Ontologies

OWL: Web Ontology Language

- W3C's ontology language for the Semantic Web
- Mainly intended to provide means for describing web content in a form amiable to automated reasoning
- Used to construct OWL ontologies that define domain specific classes and properties along with the inherent constraints among them
- OWL ontologies are then used to describe specific instances or situations in the given domain
- Built on top of RDF and XML
- Three flavors: Full, DL and Lite

SWRL

- W3C's Semantic Web Rule Language
- Extends representational power of OWL by adding implication in the form of Horn Clauses (i.e., a form of if-then rules)
- Leverages the descriptive capabilities of OWL DL
- Leverages the rule and variable syntax of RuleML

SWRL Pros and Cons

• Pros:

- Formal Foundation
- W3C Effort
- Based on RuleML
- Can connect to OWL Ontologies

• Cons:

- Limited to Binary Relations (makes higher-order relations difficult to represent)
- Verbose/complex syntax
- No Existential Quantification in rule heads (makes higher-order relations impossible to infer – we thus are ignoring this constraint with the expectation it will be removed)
- Still evolving

SAW Core Ontology

Event Ontology

SAWA Architecture

ConsVISor Consistency Checker

RuleVISor Rule Editor

- Graphical SWRL Editor
- Support for
 - all RuleML capabilities (everything in SWRL from ruleml: namespace)
 - all new SWRL elements (from swrlx: namespace, e.g., swrlx:builtin)
- Does not support arbitrary embedded OWL constructs
 - OWL Ontologies are required to be external
- Ontologies used as basis for rule building blocks

RuleVISor GUI

Supply Logistics Rule Set

```
<rule rlab="has Supply Line">
   <body>
                        sub="?unit"
                                         data="?region"/>
     <hsl:inRegion
     <hsl:isSuppliable sub="?region"</pre>
                                         data="true"/>
   </body>
   <head>
     <hsl:hasSupplyLine
                                 sub="?unit"
                                                  data="true"/>
   </head>
 </ri>
 <rule rlab="isSuppliable">
     <hsl:hasSupplyStation
                                sub="?region"
                                                  data="true"/>
     <hsl:underFriendlyControl sub="?region"</pre>
                                                  data="true"/>
   </body>
   <head>
     <hsl:isSuppliable sub="?region"</pre>
                                         data="true"/>
   </head>
 </ri>
 <rule rlab="isSuppliable2">
   <body>
     <hsl:connects</pre>
                        sub="?road"
                                         data="?region1"/>
     <hsl:connects</pre>
                        sub="?road"
                                         data="?region2"/>
     <swrlb:notEqual</pre>
       arg1="?region1"
       arg2="?region2"/>
     <hsl:isPassable
                       sub="?road"
                                         data="true"/>
     <hsl:isSuppliable sub="?region2"</pre>
                                         data="true"/>
   </body>
   <head>
     <hsl:isSuppliable sub="?region1" data="true"/>
   </head>
 </ri>
```

```
<rule rlab="underFriendlyControl">
  <body>
                       sub="?unit"
                                        data="?region"/>
    <hsl:inRegion
    <hsl:memberOf
                       sub="?unit"
                                       data="?force"/>
    <hsl:FriendlyForce ind="?force"/>
  </body>
  <head>
    <hsl:underFriendlyControl sub="?region"</pre>
                                                data="true"/>
</rule>
<rule rlab="isPassable">
  <body>
    <hsl:connects</pre>
                       sub="?road"
                                        data="?regionA"/>
    <hsl:connects</pre>
                       sub="?road"
                                        data="?regionB"/>
    <swrlb:notEqual</pre>
      arg1="?regionA"
      arg2="?regionB"/>
    <hsl:underFriendlyControl sub="?regionA" data="?force1"/>
    <hsl:underFriendlyControl sub="?regionB" data="?force2"/>
  </body>
  <head>
    <hsl:isPassable sub="?road"</pre>
                                       data="true"/>
  </head>
</ri>
<rule rlab="hasSupplyStation">
  <body>
    <hsl:inRegion
                       sub="?X"
                                       data="?region"/>
    <hsl:SupplyStation ind="?X"/>
  </body>
  <head>
    <hsl:hasSupplyStation
                               sub="?region"
                                                data="true"/>
  </head>
```

</rule>

SAWA Runtime

Triple Data Base

- Stores RDF/OWL triples
 - E.g., (predicate subject object)
- Built on Jess (Java Expert System Shell based on CLIPS)
- Infers implicit triples from events and OWL axioms
- Detects inconsistencies
- Tracks performance metrics of inference engine
- Supports OWL-QL (OWL Query Language) formerly known as DQL

Query Capabilities

- Full support of OWL Query Language DARPA sponsored effort
- Permits Queries over patterns in triples
 - e.g., (consumes ?user "food") (type ?user "company")
 - Results returned as variable bindings
- "What If" Query capability
 - assumptions posited and then retracted after query returns
- Writing queries and interpreting results can be challenging
- Prompted move to implement simple GUI

Query Interface

- Simplifies query construction
- Initial version based on static templates with fill-in slots
- Demo
- Extensions:
 - constraints between slot values enforced by GUI
 - automatic generation of candidate templates
 - free-form query wizard

Query GUI Screenshot

Supply Logistics Ontology

SAWA Runtime GUI

Conclusion

- SAWA is a general purpose assistant for situation awareness:
 - monitors the evolution of relevant higher-order relations within a situation.
 - supports formal reasoning techniques for level-2 fusion.
 - based on the Semantic Web languages OWL and SWRL.
 - performs relevance reasoning.
- The domain ontology and rules are constructed and checked using an ontology editor, rule editor and consistency checker.
- At runtime events are processed to determine relevance and to infer higherorder relations.
- As higher-order relations are detected they are passed to the GUI, which displays them in both tabular and graphical forms.
- The query capability allows for both ordinary and "what if" queries.