
2
FORMALIZATION OF SITUATION

AWARENESS

Kenneth Baclawski Mieczyslaw K. Kokar
College of Computer Science Electrical and Computer Engineering

Northeastern University Northeastern University

Boston, Massachusetts Boston, Massachusetts

Ken@Baclawski.com Kokar@coe.neu.edu

Christopher J. Matheus Jerzy Letkowski
Versatile Information Systems Western New England College

Framingham, Massachusetts Springfield, Massachusetts

chris@matheus.com jletkows@wnec.edu

Marek Malczewski
Composable Logic

Nashua, New Hampshire

marekmal@coe.neu.edu

Abstract

Situation awareness means simply that one knows what is going on around
oneself. In operational terms, this means that one knows the information
that is relevant to a task. Maintaining a coherent awareness of the situation is
essential to successful task completion. We propose a formal basis for situation
awareness that draws on sources and makes use of techniques from the logic,
human-computer interaction and data fusion communities. Our framework
includes formalizations of the data fusion process as well as the notion of a
situation. We express our formalization using various languages, including
UML, DAML and the Slang formal methods language, each of which has its
own unique contribution to our framework.

1 INTRODUCTION

Maintaining a coherent situation awareness (SAW) concerning all units op-
erating in an area of interest (battlefield, emergency situation, anti-terrorism

26 Chapter 2

campaign, and so on) is essential for achieving success. The process of achiev-
ing SAW is called Situation Analysis. The basis for SAW is a knowledge of
the objects that are located within a given region. Considerable effort has
been expended on this problem by the Data Fusion community, and effective
hardware and software are now available.
Although a knowledge of the objects is essential, it does not, by itself,

constitute SAW. It is also necessary to know all the relations among the objects
that are relevant to the current operation. In many ways this is a more difficult
problem than determining the objects. While the number of objects may be
large, the number scales linearly with the size of the region. The same cannot
be said for relations, whose possibilities increase exponentially as the number
of objects increases.
The SAW problem is further complicated by the fact that some information

that is input to a SAW system can be in many different formats (sensory in-
puts, text, intelligence) and that the exact structure of the information cannot
be predicted at the design time of the SAW system (i.e., we don’t quite know
which pieces of information will be available at a particular time instant). The
goals of SAW can also change at any time and the SAW system needs to be
informed about this, too. To address this kind of a problem a SAW system
must be able to incorporate into its processing information about types of ob-
jects, their features, rules for recognizing relations and intelligence information.
Furthermore, it has to accomplish this at run-time.
The goal of this research is to develop a formal basis for Situation Aware-

ness using a formal methods system, Specware, and the DAML+OIL ontology
language. Eventually, we plan to show how relevant symbolic information can
be conveyed to a Situation Awareness system and what can be inferred based
upon this input.
In the remainder of this paper we first give some background of the no-

tions of situation semantics and SAW in Section 2. We then describe our
approach to the formalization of SAW in Section 3. This section also discusses
the formalization languages that we use, and it gives the rationale for their
use. The general abstract formalization of situation awareness is introduced in
Section 4. The full formalization is much too large for this paper, so we only
give an overview of it using UML. However, to illustrate the process of formal-
ization, we introduce a much simpler example of a situation by using family
relationships in Section 5. The family relationship situation is represented
using all three languages.

2 BACKGROUND

A number of philosophers and logicians introduced concepts similar to that
of a situation, including von Mises [von97] in 1949 and Bunge [Bun77] in the
1970s. They observed that an open system is not fixed and possibly not com-

Formalization of Situation Awareness 27

pletely available. Therefore, the outcome of an action in the context of an open
system is always uncertain. However, the earliest formal notion of situation
(although not situation awareness) was introduced by Barwise as a means of
giving a more realistic formal semantics for speech acts than what was then
available [Bar81]. In contrast with a “world” which determines the value of
every proposition, a situation corresponds to the limited parts of reality we
perceive, reason about, and live in. A situation will determine answers in some
cases, but not all. Furthermore, in situation semantics, basic properties, rela-
tions, events and even situations are reified as objects [Bar89]. While Barwise’s
situation semantics is only one of the many alternative semantic frameworks
that are currently available, its basic themes have been incorporated into most
frameworks.
The specific term situation awareness is most commonly used by the Human-

Computer Interaction (HCI) community (cf. [EG00]). The concerns of this
community are to design computer interfaces so that a human operator can
achieve SAW in a timely fashion. From this point of view, SAW occurs in the
mind of the operator. In almost any fairly complex system, such as military
aircraft and nuclear reactors, manual tasks are being replaced by automated
functions. However, human operators are still responsible for managing SAW.
This raises new kinds of problems due to human limitations in maintaining
SAW. The SAW literature gives many examples of incidents and accidents,
which could have been avoided if operators had recognized the situation in
time. These problems can be categorized [BZSF96] as follows:

• System data problems - data may be presented in such a way that it is
hard to reason upon (spread across many displays, presented with great
deal of details that makes impossible for human to process it) or may be
hidden within the automated functions.

• Human limitations - humans make errors because of a lack of concentra-
tion due to interruptions or a heavy workload.

• Time-related problems - problems may not occur instantly but they may
arise for a long period of time, in which case it is hard to determine that
the system is in dangerous state. Often systems are constantly changing,
so that it may be hard to decide which pieces of data are important and
which need to be analyzed.

For more complicated scenarios, it is apparent one can no longer rely on human
operators to perform the entire SAW task alone. Some form of knowledge
management assistance is necessary.
Situation awareness is also used in the data fusion community (except that

they call it situation assessment). Data fusion is an increasingly important
element of diverse military and commercial systems. It uses overlapping in-
formation to detect, identify and track relevant objects in a region. The term

28 Chapter 2

Data Fusion Level Association Estimation Entity
Process Estimated

L.0–Sub-Object
Assessment
L.1–Object
Assessment

Assignment

Detection

Attribution

Signal

Physical
Object

L.2–Situation
Assessment
L.3–Impact
Assessment

Aggregation

Relation

Plan Interaction

Aggregation
(Situation)
Effect

L.4–Process
Refinement

Planning (Control) (Action)

Table 1: Characterization of Data Fusion Levels

“data fusion” is used because information originates from multiple sources.
More succinctly, data fusion is the process of combining data to refine state
estimates and predictions [SBW99].
The terminology of data fusion has been standardized by the Joint Directors

of Laboratories (JDL) Data Fusion Group, and this group maintains a Data
Fusion Model. In this model, data fusion is divided into 5 levels as shown in
Table 1. Note that SAW is Level 2 data fusion in this model. The JDL model
defines SAW to be the “estimation and prediction of relations among entities,
to include force structure and cross force relations, communications and per-
ceptual influences, physical context, etc.” Level 2 processing typically “involves
associating tracks (i.e., hypothesized entities) into aggregations. The state of
the aggregate is represented as a network of relations among its elements. We
admit any variety of relations to be considered – physical, organizational, in-
formational, perceptual – as appropriate to the given need.” The table and all
quotations in this paragraph are from [SBW99].
In our formalization we will make use of elements of all three of the frame-

works mentioned above (i.e., Logic, HCI and JDL), although we will emphasize
the terminology and point of view of the JDL model.

3 FORMALIZATION PROCESS

It would be wonderful if there was a single formal methods framework and lan-
guage that would be the “best practice” for every possible use. Unfortunately,
the reality is that different frameworks and languages are necessary because
each one has features and advantages that are only available for it. The fol-
lowing are the languages we used in formalizing SAW along with some of their
features:

Formalization of Situation Awareness 29

• Unified Modeling Language (UML) [BJR00]

– A “best practice” graphical representation.

– Widely adopted in industry and academics.

– Supported by mature CASE tools.

– Open standard maintained by the OMG.

– The semantics is not yet formally specified.

• DARPA Agent Markup Language (DAML) [DAM01]

– Emerging Web-based interchange format.

– Logic-based and formally specified semantics.

– Designed for ontologies and annotations.

– Does not yet include rules.

• Specware Formal Methods System [W+98]

– System for formal specifications. The Specware language is called
Slang.

– Supports theory management and refinement via category theory
(colimit operation).

– Integrated with a theorem prover (SNARK) [SNA02, SWC02].

The graphical representation of UML is the most important feature that we
use, but the other features are also useful. However, UML is not logic-based,
so it is necessary to introduce at least one other language. DAML is not
only logic-based and formal, but it is also an emerging Web-based interchange
format.
Another important feature of DAML that is not shared by UML is the

notion of monotonicity. A logical system is monotonic if adding new facts can
never cause previous facts to be falsified. Of course, one must be careful to
define which facts are being considered in this process so that it makes sense.
DAML (or more precisely the logical system within which DAML is defined)
is monotonic: asserting a new fact can never cause a previously known fact to
become false.
By contrast, UML and other OO systems are typically not monotonic.

There are many forms of nonmonotonic logic, but the one that is closest to
UML and OO systems is a logic that assumes a closed world. A simple example
can illustrate how monotonicity affects inference. Suppose that one specifies
that every person must have a father. Consider what would happen if no father
was specified for a particular person object. In UML this situation would be
considered to be a violation of the requirement that every person must have
a father, and a suitable error message would be generated. In a monotonic

30 Chapter 2

logic, on the other hand, one cannot make any such conclusion. The person
who appears not to have a father really does have one, it just isn’t known who
he is.
As discussed above, situations generally represent only a partial knowledge

of the world. In particular, this means that one might not know who everyone’s
father is. Accordingly, the monotonic logic used by DAML is more appropriate
for SAW than the closed world assumption used in UML.
Developing automated translators between these languages can be challeng-

ing. For an analysis of the problem of translating between UML and DAML,
including a discussion of the issue of monotonicity, see [BKK+02].
One feature that is needed for situation awareness is the ability to derive

relations based upon knowledge about objects. This requires the use of rules.
At this point DAML does not have rules, although an effort to include rules in
the language is underway. To accommodate this requirement, we use a formal
method language Slang. In Slang rules are represented as axioms. Conse-
quently, rules can be used by a Slang-aware theorem prover in its reasoning
process.

4 FORMALIZATION OF SITUATION AWARENESS

The top level formalization of situation awareness is shown in Figure 1. A
situation consists of a collection of situational objects, a set of relation evolu-

tions or streams that capture relations among objects over time, and perhaps
some goals that define what the user is interested in achieving. Note that the
situation is itself a situational object permitting reasoning about situations
themselves.

Physical objects are situational objects that have region evolutions. A re-
gion evolution defines the physical location and space occupied by an object
at any point in time. The subclasses of physical objects depend upon the do-
main. In the diagram we depict a military domain where the physical objects
are made up of military units (e.g. platoons, tanks, observation posts) and ob-
stacles (e.g. minefields, rivers, trenches) which we have split, for convenience,
into two separate ontologies. Similarly, relation evolutions depend upon the
domain. In a military scenario these would be relations such as firingAt(x,y)
or advancingTowards(x,y).
The evolution of objects and relations is typically defined by using events

rather than by ordered sequences of objects and relations. The idea is that one
does not have to represent entire object or relation streams. It is enough to
represent those parts of a situation that have changed in a manner that is not
predictable. For example, most vehicles follow tracks that can be defined by a
series of way-points where the vehicle stops, starts or changes its direction.
The formalization, as expressed in Slang, is built progressively starting with

basic generic specifications such as ordered sets and proceeding through more

Formalization of Situation Awareness 31

Figure 1: The Top Level Formalization of Situation Awareness

specific specifications. The colimit operation is used to construct specifications
in a modular fashion. The following are the main stages:

1. Basic specs: Order, Reals, Attributes. These are mostly well known, so
they were not shown.

2. Physical reality: Time, Location. These are also well known, so only
abbreviated specifications are shown.

3. Streams: Sensors, Features, Objects, Relations. These are built using
colimits based on a general specification for a stream.

4. Extraction: Computing one kind of stream from another kind.

5. Fusion: Merging two or more streams into one stream.

6. Situations: Various streams are selected based on a task or goal.

We focus on the later stages (higher levels) in this paper. For more on the
formalization of data fusion see the work of Kokar and his colleagues [KW02b,
KW02a, KTW01, KK01, KTW99, KBF00].

32 Chapter 2

The Slang language is based on sorts and operations on sorts. Subclasses
(or more precisely, subsorts) are specified using unary operations, and relations
are specified using binary (or more generally n-ary) operations. Constraints
are specified using axioms written in first-order predicate logic.
Level 1 data fusion is a process whereby sensor measurements are processed

and combined (not necessarily in this order) to determine objects located in
space and time. Sensor measurements are usually discrete and therefore only
accurate to the extent of the rate at which they are performed. Generally
objects will have a finite extent both in space and time (i.e., an object will
occupy a region in space and will exist for a period of time). Objects also
have features, and these features can also vary in time. The variation of an
object in time is called its region evolution. One can also view time (and space)
variation as a sequence of “snapshots” that form a stream. This also reflects
the fact that sensor measurements are usually discrete in time. We use the
terms stream and evolution interchangeably.
In higher order theories an entity stream could be specified in a number

of ways. For example, Stream could be a sort Stream = (L * T -> E), or
a sort Stream = (L * T * E -> Boolean), where L is the sort representing
geographic location, T is the sort representing time and the asterisk represents
the cartesian product. In the former case each element s ∈ Stream assigns
only one entity E to a point in space-time. In the latter case, a point in space-
time can have multiple values. The same effect could be achieved by defining
the sort Stream = (L * T -> 2E).
While higher order specifications are easier to understand, most theorem

provers have considerable difficulty dealing with them, if they can be handled
at all. It is also relatively difficult to represent them in databases. Accord-
ingly, we restrict our specifications to first order. In the case of a Stream, it
is specified using the operation observe: Stream * L * T * E -> Boolean

(i.e., a relation with four fields). When observe(s,l,t,e) is true, it means
that for the stream s, the entity e has been observed at time t in location l.
Note that entities can overlap: more than one entity can be observed at the
same point in space-time.
When specifying axioms in Slang, one writes fa for the universal quantifier

(i.e., “for all”) and ex for the existential quantifier (i.e., “there exists”). Quan-
tification is over one or more variables, each of which varies over a specific sort.
Thus fa(x:T) means “for all x in T”.
The following is the specification of a Stream in Slang:

%% Stream

%% Template for a data or object stream.

spec STREAM is

import LOCATION % geographic location

Formalization of Situation Awareness 33

import TIME % temporal location

sort Stream % streams

sort E % elements that vary over space and time.

op observe: Stream * L * T * E -> Boolean

%% A stream is determined by its observations,

axiom measure_extensionality is

fa(s1:Stream,s2:Stream)

(fa(l:L,t:T,e:E)

observe(s1,l,t,e) = observe(s2,l,t,e)) => s1 = s2

end-spec

Extraction is the process whereby raw measurements are converted to
objects, features, relations and so on. Assuming that extraction is being per-
formed in real-time, then extraction must satisfy a causality condition: one
cannot use future measurements for current extraction. Of course, if the ex-
traction is being done offline, then this requirement can be relaxed.
To specify object extraction we make use of the colimit operation. This

operation allows one to build specifications in a modular fashion. A colimit is
a combination of a set of specs that may have features (i.e., sorts and oper-
ations) in common. Importing one spec into another is the simplest example
of a colimit. More complex forms of colimit allow one to perform a form of
“template instantiation.” In the specification for object extraction, the general
notion of a Stream is specialized to that of an object stream using a colimit.
The resulting spec is then imported into the spec for object recognition as
follows:

%% Object streams are the outputs

%% of the object recognition process.

def OBJECTSTREAM : Spec = Specware.translate STREAM by

["Stream" |-> "OStream", "E" |-> "O"]

%% Object recognition extracts objects from measurements.

spec OBJECTRECOGNITION is

import MEASUREMENTSTREAM

import OBJECTSTREAM

%% Object recognition using a sensor measurement stream.

op recognize: MStream -> OStream

%% Causality for object recognition.

34 Chapter 2

axiom object_recognition_causality is

fa(m1:MStream,m2:MStream,t:T)

(fa(p:T,l:L,v:V)

le(p,t) => measure(m1,l,p,v) = measure(m2,l,p,v))

=>

(fa(p:T,l:L,o:O)

le(p,t) => object(recognize(m1),l,p,o)

= object(recognize(m2),l,p,o))

end-spec

Level 2 data fusion is a process whereby relations are deduced from the
objects determined by level 1 processing or from other relations. Relations
vary in time (i.e., evolve over time), but they do not have spacial extent. A
situation is a collection of situation objects that includes object and relation
streams as well as other situations.
The following is a specification of relation streams in Slang:

%% Relation streams are the outputs of

%% the relation recognition process.

%% Relation streams are temporal but not geographic,

spec RELATIONSTREAM is

import OBJECTSTREAM

sort RSymbol % Relation symbols

sort RStream % Relation stream for one relation

%% The meaning of relates(r,t,o1,o2) is that in the relation

%% stream r, the objects o1 and o2 are related at time t.

op relates: RStream * T * O * O -> Boolean

%% Each relation stream has a unique relation symbol.

op relationSymbol: RStream -> RSymbol

%% A relation stream is determined

%% by its symbol and its values.

axiom relation_stream_extensionality is

fa(r1:RStream,r2:RStream)

(fa(t:T,o1:O,o2:O)

relates(r1,t,o1,o2) = relates(r2,t,o1,o2))

& relationSymbol(r1) = relationSymbol(r2) => r1 = r2

end-spec

Formalization of Situation Awareness 35

Figure 2: The Family Relationship Ontology in UML

5 SITUATION EXAMPLE

We now show an example of a simple situation involving family relationships.
For simplicity, we have suppressed the time and space evolution of the objects
and relationships. The formalization makes use of all three languages, and the
translations between them were automated to the extent that this was possible.
The specification has two parts: the ontology (schema) and the annotation
(specific situation). We first show the situation in UML, then in DAML and
finally in Slang.

5.1 Family Situation in UML

The Family Relationships is shown in Figure 2. The class Person is the com-
mon generalization of the Male and Female classes. The various associations
involving Person are inherited by its subclasses. These associations are not in-
dependent of one another, but these dependencies cannot be expressed graphi-
cally in UML (although they can be specified using OCL). A particular family
situation is shown in Figure 3.

5.2 Family Situation in DAML

The family ontology was translated from UML to DAML using DUET [DUE02],
and part of the resulting DAML ontology is as follows:

36 Chapter 2

<a:Ontology rdf:about="Family"/>

<a:Restriction rdf:about="Family#DUET0"/>

<a:toClass rdf:resource="Family#Female"/>

<a:onProperty rdf:resource="Family#daughter"/>

</a:Restriction>

<a:Restriction rdf:about="Family#DUET1">

<a:toClass rdf:resource="Family#Person"/>

<a:onProperty rdf:resource="Family#daughterOf"/>

</a:Restriction>

<a:Restriction rdf:about="Family#DUET2">

<a:toClass rdf:resource="Family#Female"/>

<a:onProperty rdf:resource="Family#mother"/>

</a:Restriction>

Relationships are called Properties in DAML, and the usual mechanism in
DAML for specifying domain and range constraints is to impose a Restriction
on the relationship.
The particular situation was also translated to DAML as follows:

<f:Male rdf:ID="John"/>

<f:Male rdf:ID="Paul"/>

<f:Female rdf:ID="Lidia">

<f:marriedTo rdf:resource="#John"/>

</f:Female>

<f:Male rdf:ID="Peter">

<f:fatherOf rdf:resource="#Paul"/>

<f:fatherOf rdf:resource="#Lidia"/>

</f:Male>

Note that DAML annotations look very much like ordinary XML docu-
ments. In most cases, it is straightforward to translate from an XML DTD
to a DAML ontology. One cannot completely automate this process because
the DTD does not have all the necessary information. In particular a DTD
will not distinguish a class from an association. Nevertheless, a tool has been
developed that assist a developer in the task of converting XML DTDs and
XSD schemas to DAML [Nei02].

5.3 Family Situation in Slang

The family ontology is written in Slang as follows:

sort Person

op sonOf: Person * Person -> Boolean

op daughterOf: Person * Person -> Boolean

op brotherOf: Person * Person -> Boolean

Formalization of Situation Awareness 37

Figure 3: The Family Relationship Situation in UML

op sisterOf: Person * Person -> Boolean

op siblings: Person * Person -> Boolean

op brotherInLawOf: Person * Person -> Boolean

op fatherOf: Person * Person -> Boolean

op motherOf: Person * Person -> Boolean

op marriedTo: Person * Person -> Boolean

op male: Person -> Boolean

op female: Person -> Boolean

axiom son_is_male_childOf_his_father is

fa(X:Person,Y:Person) male(Y) & fatherOf(X,Y) => sonOf(Y,X)

axiom sister_female_same_father is

fa(X:Person,Y:Person,Z:Person) female(X) & fatherOf(Z,X) &

fatherOf(Z,Y) => sisterOf(X,Y)

axiom sister_female_same_mother is

fa(X:Person,Y:Person,Z:Person) female(X) & motherOf(Z,X) &

motherOf(Z,Y) => sisterOf(X,Y)

axiom brother_male_same_father is

fa(X:Person,Y:Person,Z:Person) male(X) & motherOf(Z,X) &

motherOf(Z,Y) => brotherOf(X,Y)

axiom siblings_are_brother_sister is

fa(X:Person,Y:Person)

brotherOf(X,Y) or sisterOf(X,Y) => siblings(X,Y)

axiom marriage_is_symmetric is

fa(X:Person,Y:Person) marriedTo(X,Y) => marriedTo(Y,X)

axiom brotherInLawOf_male_sibling_of_siblings_spouse is

38 Chapter 2

fa(X:Person,Y:Person,Z:Person) male(X) & siblings(X,Y) &

marriedTo(Y,Z) => brotherInLawOf(X,Z)

The family situation also uses operations and axioms. The operations in
this case have only a domain and no range. Such an operation is just a constant.
The situation is as follows:

op John: Person

axiom John_is_male is male(John)

op Paul: Person

axiom Paul_is_male is male(Paul)

op Lidia: Person

axiom Lidia_is_female is female(Lidia)

op Peter: Person

axiom Peter_is_male is male(Peter)

axiom Peter_is_fatherOf_Paul is fatherOf(Peter,Paul)

axiom Peter_is_fatherOf_Lidia is fatherOf(Peter,Lidia)

axiom Lidia_is_marriedTo_John is marriedTo(Lidia,John)

Having represented the family ontology and situation in Slang, one can then
use the SNARK theorem prover to prove theorems.

ACKNOWLEDGEMENTS

This research was partially supported by AFRL/IF under contract F30602-02-
C-0039.

REFERENCES

[Bar81] J. Barwise. Scenes and other situations. J. Philosophy, 77:369–397, 1981.

[Bar89] J. Barwise. The Situation In Logic, volume 17. CSLI/SRI International,
Menlo Park, CA, 1989.

[BJR00] G. Booch, I. Jacobson, and J. Rumbaugh. OMG Unified Modeling Lan-

guage Specification, March 2000. Available at www.omg.org/technology/-
documents/formal/unified modeling language.htm.

[BKK+02] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, J. Letkowski, and
P. Emery. Extending the Unified Modeling Language for ontology devel-
opment. Software and System Modeling, 1(2):142–156, 2002.

[Bun77] M. Bunge. Treatise on Basic Philosophy. III: Ontology: The Furniture of

the World. Reidel, Dordrecht, Netherlands, 1977.

[BZSF96] E. Bass, J. Zenyuh, R. Small, and S. Fortin. A context-based approach
to training situation awareness. In Proc. Third Annual Symposium on

Human Interaction with Complex Systems, pages 89–95, Los Alamitos,
CA, 1996. IEEE Computer Society Press.

Formalization of Situation Awareness 39

[DAM01] DAML. DARPA Agent Markup Language website, 2001. www.daml.org.

[DUE02] DUET. DAML UML enhanced tool (DUET), 2002. grcinet.grci.com/
maria/www/CodipSite/Tools/Tools.html.

[EG00] M. Endsley and D. Garland. Situation Awareness, Analysis and Measure-

ment. Lawrence Erlbaum, Mahwah, NJ, 2000.

[KBF00] M.M. Kokar, M. Bedworth, and K. Frankel. A reference model for data
fusion systems. In Sensor Fusion: Architectures, Algorithms, and Appli-

cations IV, pages 191–202, Orlando, FL, 2000.

[KK01] M.M. Kokar and Z. Korona. A formal approach to the design of feature-
based multi-sensor recognition systems. Int. J. Information Fusion,
2(2):77–89, 2001.

[KTW99] M.M. Kokar, J. Tomasik, and J. Weyman. A formal approach to in-
formation fusion. In Proc, of the Second Int. Conf. Information Fusion,
volume 1, pages 133–140, 1999.

[KTW01] M.M. Kokar, J. Tomasik, and J. Weyman. Data vs. decision fusion in the
category theory framework. In Proc. of FUSION 2001 - 4th International

Conference on Information Fusion, volume 1, pages TuA3–15–TuA3–20,
2001.

[KW02a] M.M. Kokar and J. Wang. An example of using ontologies and symbolic
information in automatic target recognition. In Sensor Fusion: Architec-

tures, Algorithms, and Applications VI, pages 40–50, Orlando, FL, 2002.

[KW02b] M.M. Kokar and J. Wang. Using ontologies for recognition: An example.
In Proc. 5th Int. Conf. Information Fusion, pages 1324–1343, 2002.

[Nei02] M. Neighbors. XML to DAML translator, 2002. www.davinciNetBook.

com:8080/daml/xmltodaml/presentation/sld001.htm.

[SBW99] A. Steinberg, C. Bowman, and F. White. Revisions to the JDL data
fusion model. In SPIE Conf. Sensor Fusion: Architectures, Algorithms

and Applications III, volume 3719, pages 430–441, April 1999.

[SNA02] SNARK. SRI’s new automated reasoning kit, 2002. www.ai.sri.com/

∼stickel/snark.html.

[SWC02] M.E. Stickel, R.J. Waldinger, and V.K. Chaudhri. A Guide to SNARK,
2002. www.ai.sri.com/snark/tutorial/tutorial.html.

[von97] L. vonMises. Human Action: A Treatise on Economics. Fox & Wilkes,
January 1997. Originally published in 1949.

[W+98] R. Waldinger et al. Specwaretm Language Manual: Specwaretm 2.0.3,
March 1998.

