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Abstract

Situation awareness means simply that one knows what is going on around oneself.

In operational terms, this means that one knows the information that is relevant to

a task. Maintaining a coherent awareness of the situation is essential to successful

task completion. We propose a formal basis for situation awareness that draws on

sources and makes use of techniques from the logic, human-computer interaction and

data fusion communities. Our framework includes formalizations of the data fusion

process as well as the notion of a situation. We express our formalization using various

languages, including UML, DAML and the Slang formal methods language, each of

which has its own unique contribution to our framework.

Keywords: situation, situation awareness, ontology, formal method, relation derivation,
events

1 Introduction

Maintaining a coherent situation awareness (SAW) concerning all units operating in an area
of interest (battlefield, emergency situation, anti-terrorism campaign, and so on) is essential
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for achieving success. The process of achieving SAW is called Situation Analysis. The basis
for SAW is a knowledge of the objects that are located within a given region. Considerable
effort has been expended on this problem by the Data Fusion community, and effective
hardware and software are now available.
Although a knowledge of the objects is essential, it does not, by itself, constitute SAW. It

is also necessary to know all the relations among the objects that are relevant to the current
operation. In many ways this is a more difficult problem than determining the objects.
While the number of objects may be large, the number scales linearly with the size of the
region. The same cannot be said for relations, whose possibilities increase exponentially as
the number of objects increases.
The SAW problem is further complicated by the fact that some information that is input

to a SAW system can be in many different formats (sensory inputs, text, intelligence) and
that the exact structure of the information cannot be predicted at the design time of the SAW
system (i.e., we don’t quite know which pieces of information will be available at a particular
time instant). The goals of SAW can also change at any time and the SAW system needs to
be informed about this, too. To address this kind of a problem a SAW system must be able
to incorporate into its processing information about types of objects, their features, rules for
recognizing relations and intelligence information. Furthermore, it has to accomplish this at
run-time.
The goal of this research is to develop a formal basis for Situation Awareness using a

formal methods system, Specware, and the DAML+OIL ontology language. Eventually, we
plan to show how relevant symbolic information can be conveyed to a Situation Awareness
system and what can be inferred based upon this input.
In the remainder of this paper we first give some background of the notions of situation

semantics and SAW in Section 2. We then describe our approach to the formalization of
SAW in Section 3. This section also discusses the formalization languages that we use, and
it gives the rationale for their use. The general abstract formalization of situation awareness
is introduced in Section 4. The full formalization is much too large for this paper, so we only
give an overview of it using UML. However, to illustrate the process of formalization, we
introduce a much simpler example of a situation by using family relationships in Section 5.
The family relationship situation is represented using all three languages.

2 Background

A number of philosophers and logicians introduced concepts similar to that of a situation,
including von Mises [20] in 1949 and Bunge [6] in the 1970s. They observed that an open
system is not fixed and possibly not completely available. Therefore, the outcome of an
action in the context of an open system is always uncertain. However, the earliest formal
notion of situation (although not situation awareness) was introduced by Barwise as a means
of giving a more realistic formal semantics for speech acts than what was then available [2].
In contrast with a “world” which determines the value of every proposition, a situation cor-
responds to the limited parts of reality we perceive, reason about, and live in. A situation
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will determine answers in some cases, but not all. Furthermore, in situation semantics, basic
properties, relations, events and even situations are reified as objects [3]. While Barwise’s sit-
uation semantics is only one of the many alternative semantic frameworks that are currently
available, its basic themes have been incorporated into most frameworks.
The specific term situation awareness is most commonly used by the Human-Computer

Interaction (HCI) community (cf. [9]). The concerns of this community are to design com-
puter interfaces so that a human operator can achieve SAW in a timely fashion. From this
point of view, SAW occurs in the mind of the operator. In almost any fairly complex system,
such as military aircraft and nuclear reactors, manual tasks are being replaced by automated
functions. However, human operators are still responsible for managing SAW. This raises
new kinds of problems due to human limitations in maintaining SAW. The SAW literature
gives many examples of incidents and accidents, which could have been avoided if operators
had recognized the situation in time. These problems can be categorized [4] as follows:

• System data problems - data may be presented in such a way that it is hard to reason
upon (spread across many displays, presented with great deal of details that makes
impossible for human to process it) or may be hidden within the automated functions.

• Human limitations - humans make errors because of a lack of concentration due to
interruptions or a heavy workload.

• Time-related problems - problems may not occur instantly but they may arise for a long
period of time, in which case it is hard to determine that the system is in dangerous
state. Often systems are constantly changing, so that it may be hard to decide which
pieces of data are important and which need to be analyzed.

For more complicated scenarios, it is apparent one can no longer rely on human operators
to perform the entire SAW task alone. Some form of knowledge management assistance is
necessary.
Situation awareness is also used in the data fusion community (except that they call it

situation assessment). Data fusion is an increasingly important element of diverse military
and commercial systems. It uses overlapping information to detect, identify and track rel-
evant objects in a region. The term “data fusion” is used because information originates
from multiple sources. More succinctly, data fusion is the process of combining data to refine
state estimates and predictions [18].
The terminology of data fusion has been standardized by the Joint Directors of Labora-

tories (JDL) Data Fusion Group, and this group maintains a Data Fusion Model. In this
model, data fusion is divided into 5 levels as shown in Table 1. Note that SAW is Level 2 data
fusion in this model. The JDL model defines SAW to be the “estimation and prediction of
relations among entities, to include force structure and cross force relations, communications
and perceptual influences, physical context, etc.” Level 2 processing typically “involves as-
sociating tracks (i.e., hypothesized entities) into aggregations. The state of the aggregate is
represented as a network of relations among its elements. We admit any variety of relations
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Data Fusion Level Association Process Estimation Entity Estimated
L.0–Sub-Object
Assessment
L.1–Object
Assessment

Assignment

Detection

Attribution

Signal

Physical Object

L.2–Situation
Assessment
L.3–Impact
Assessment

Aggregation

Relation

Plan Interaction

Aggregation
(Situation)

Effect (Situation,
given Plans)

L.4–Process
Refinement

Planning (Control) (Action)

Table 1: Characterization of Data Fusion Levels

to be considered – physical, organizational, informational, perceptual – as appropriate to the
given need.” The table and all quotations in this paragraph are from [18].
In our formalization we will make use of elements of all three of the frameworks mentioned

above (i.e., Logic, HCI and JDL), although we will emphasize the terminology and point of
view of the JDL model.

3 Formalization Process

It would be wonderful if there was a single formal methods framework and language that
would be the “best practice” for every possible use. Unfortunately, the reality is that different
frameworks and languages are necessary because each one has features and advantages that
are only available for it. The following are the languages we used in formalizing SAW along
with some of their features:

• Unified Modeling Language (UML) [5]

– A “best practice” graphical representation.

– Widely adopted in industry and academics.

– Supported by mature CASE tools.

– Open standard maintained by the OMG.

• DARPA Agent Markup Language (DAML) [7]

– Emerging Web-based interchange format.

– Logic-based and formally specified.

– Designed for ontologies and annotations.

– Does not yet include rules.
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• Specware Formal Methods System [21]

– System for formal specifications. The Specware language is called Slang.

– Supports theory management and refinement via category theory (colimit opera-
tion).

– Integrated with a theorem prover (SNARK) [17, 19].

The graphical representation of UML is the most important feature that we use, but
the other features are also useful. However, UML is not logic-based, so it is necessary to
introduce at least one other language. DAML is not only logic-based and formal, but it is
also an emerging Web-based interchange format.
Another important feature of DAML that is not shared by UML is the notion of mono-

tonicity. A logical system is monotonic if adding new facts can never cause previous facts to
be falsified. Of course, one must be careful to define which facts are being considered in this
process so that it makes sense. DAML (or more precisely the logical system within which
DAML is defined) is monotonic: asserting a new fact can never cause a previously known
fact to become false.
By contrast, UML and other OO systems are typically not monotonic. There are many

forms of nonmonotonic logic, but the one that is closest to UML and OO systems is a
logic that assumes a closed world. A simple example can illustrate how monotonicity affects
inference. Suppose that one specifies that every person must have a father. Consider what
would happen if no father was specified for a particular person object. In UML this situation
would be considered to be a violation of the requirement that every person must have a father,
and a suitable error message would be generated. In a monotonic logic, on the other hand,
one cannot make any such conclusion. The person who appears not to have a father really
does have one, it just isn’t known who he is.
As discussed above, situations generally represent only a partial knowledge of the world.

In particular, this means that one might not know who everyone’s father is. Accordingly,
the monotonic logic used by DAML is more appropriate for SAW than the closed world
assumption used in UML.
Developing automated translators between these languages can be challenging. For an

analysis of the problem of translating between UML and DAML, including a discussion of
the issue of monotonicity, see [1].
One feature that is needed for situation awareness is the ability to derive relations based

upon knowledge about objects. This requires the use of rules. At this point DAML does not
have rules, although an effort to include rules in the language is underway. To accommodate
this requirement, we use a formal method language Slang. In Slang rules are represented as
axioms. Consequently, rules can be used by a Slang-aware theorem prover in its reasoning
process.
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Figure 1: The Top Level Formalization of Situation Awareness

4 General Formalization of Situation Awareness

The top level formalization of situation awareness is shown in Figure 1. A situation consists of
a collection of situational objects, a set of relation evolutions or streams that capture relations
among objects over time, and perhaps some goals that define what the user is interested in
achieving. Note that the situation is itself a situational object permitting reasoning about
situations themselves.

Physical objects are situational objects that have region evolutions. A region evolution
defines the physical location and space occupied by an object at any point in time. The
subclasses of physical objects depend upon the domain. In the diagram we depict a military
domain where the physical objects are made up of military units (e.g. platoons, tanks,
observation posts) and obstacles (e.g. minefields, rivers, trenches) which we have split,
for convenience, into two separate ontologies. Similarly, relation evolutions depend upon
the domain. In a military scenario these would be relations such as firingAt(x,y) or
advancingTowards(x,y).
The evolution of objects and relations is typically defined by using events rather than by

ordered sequences of objects and relations. The idea is that one does not have to represent
entire object or relation streams. It is enough to represent those parts of a situation that
have changed in a manner that is not predictable. For example, most vehicles follow tracks
that can be defined by a series of way-points where the vehicle stops, starts or changes its
direction.
The formalization, as expressed in Slang, is built progressively starting with basic generic
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specifications such as ordered sets and proceeding through more specific specifications. The
colimit operation is used to construct specifications in a modular fashion. The following are
the main stages:

1. Basic specs: Order, Reals, Attributes. These are mostly well known, so they were not
shown.

2. Physical reality: Time, Location. These are also well known, so only abbreviated
specifications are shown.

3. Streams: Sensors, Features, Objects, Relations. These are built using colimits based
on a general specification for a stream.

4. Extraction: Computing one kind of stream from another kind.

5. Fusion: Merging two streams into one stream.

6. Situations: Various streams are selected based on a task or goal.

We focus on the later stages (higher levels) in this paper. For more on the formalization of
data fusion see the work of Kokar and his colleagues [15, 14, 13, 11, 12, 10].
The Slang language is based on sorts and operations on sorts. Subclasses (or more

precisely, subsorts) are specified using unary operations, and relations are specified using
binary (or more generally n-ary) operations. Constraints are specified using axioms written
in first-order predicate logic.
Level 1 data fusion is a process whereby sensor measurements are processed and com-

bined (not necessarily in this order) to determine objects located in space and time. Sensor
measurements are usually discrete and therefore only accurate to the extent of the rate at
which they are performed. Generally objects will have a finite extent both in space and time
(i.e., an object will occupy a region in space and will exist for a period of time). Objects also
have features, and these features can also vary in time. The variation of an object in time
is called its region evolution. One can also view time (and space) variation as a sequence
of “snapshots” that form a stream. This also reflects the fact that sensor measurements are
usually discrete in time. We use the terms stream and evolution interchangeably.
In higher order theories an entity stream could be specified in a number of ways. For

example, Stream could be a sort Stream = (L * T -> E), or a sort Stream = (L * T * E

-> Boolean), where L is the sort representing geographic location, T is the sort representing
time and the asterisk represents the cartesian product. In the former case each element
s ∈ Stream assigns only one entity E to a point in space-time. In the latter case, a point in
space-time can have multiple values. The same effect could be achieved by defining the sort
Stream = (L * T -> 2E).
While higher order specifications are easier to understand, most theorem provers have

considerable difficulty dealing with them, if they can be handled at all. It is also relatively
difficult to represent them in databases. Accordingly, we restrict our specifications to first
order. In the case of a Stream, it is specified using the operation observe: Stream * L
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* T * E -> Boolean (i.e., a relation with four fields). When observe(s,l,t,e) is true, it
means that for the stream s, the entity e has been observed at time t in location l. Note that
entities can overlap: more than one entity can be observed at the same point in space-time.
The following is the specification of a Stream in Slang:

%% Stream

%% Template for a data or object stream.

spec STREAM is

import LOCATION % geographic location

import TIME % temporal location

sort Stream % streams

sort E % elements that vary over space and time.

op observe: Stream * L * T * E -> Boolean

%% A stream is determined by its observations,

axiom measure_extensionality is

fa(s1:Stream, s2:Stream)

(fa(l:L, t:T, e:E) observe(s1,l,t,e) = observe(s2,l,t,e)) => s1 = s2

end-spec

Extraction is the process whereby raw measurements are converted to objects, features,
relations and so on. Assuming that extraction is being performed in real-time, then ex-
traction must satisfy a causality condition: one cannot use future measurements for current
extraction. Of course, if the extraction is being done offline, then this requirement can be
relaxed.
The following is the specification of object extraction:

%% Object streams are the outputs of the object recognition process.

def OBJECTSTREAM : Spec = Specware.translate STREAM by

[ "Stream" |-> "OStream", "E" |-> "O" ]

%% Object recognition extracts objects from measurements.

spec OBJECTRECOGNITION is

import MEASUREMENTSTREAM

import OBJECTSTREAM

%% Object recognition using a sensor measurement stream.

op recognize: MStream -> OStream
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%% Causality for object recognition.

axiom object_recognition_causality is

fa(m1:MStream,m2:MStream,t:T)

(fa(p:T,l:L,v:V)

le(p,t) => measure(m1,l,p,v) = measure(m2,l,p,v)) =>

(fa(p:T,l:L,o:O)

le(p,t) => object(recognize(m1),l,p,o) = object(recognize(m2),l,p,o))

end-spec

Note the use of a colimit to define the notion of object stream from the more general notion
of a stream.
Level 2 data fusion is a process whereby relations are deduced from the objects determined

by level 1 processing or from other relations. Relations vary in time (i.e., evolve over time),
but they do not have spacial extent. A situation is a collection of situation objects that
includes object and relation streams as well as other situations.
The following is a specification of relation streams in Slang:

%% Relation streams are the outputs of

%% the relation recognition process.

%% Relation streams are temporal but not geographic,

spec RELATIONSTREAM is

import OBJECTSTREAM

sort RSymbol % Relation symbols

sort RStream % Relation stream for one relation

%% The meaning of relates(r,t,o1,o2) is that in the relation

%% stream r, the objects o1 and o2 are related at time t.

op relates: RStream * T * O * O -> Boolean

%% Each relation stream has a unique relation symbol.

op relationSymbol: RStream -> RSymbol

%% A relation stream is determined by its symbol and its values.

axiom relation_stream_extensionality is

fa(r1:RStream,r2:RStream)

(fa(t:T,o1:O,o2:O) relates(r1,t,o1,o2) = relates(r2,t,o1,o2))

& relationSymbol(r1) = relationSymbol(r2) => r1 = r2

end-spec
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Figure 2: The Family Relationship Ontology in UML

5 Situation Example

We now show an example of a simple situation involving family relationships. For simplicity,
we have suppressed the time and space evolution of the objects and relationships. The
formalization makes use of all three languages, and the translations between them were
automated to the extent that this was possible. The specification has two parts: the ontology
(schema) and the annotation (specific situation). We first show the situation in UML, then
in DAML and finally in Slang.

5.1 Family Situation in UML

The Family Relationships is shown in Figure 2. The class Person is the common generaliza-
tion of the Male and Female classes. The various associations involving Person are inherited
by its subclasses. These associations are not independent of one another, but these depen-
dencies cannot be expressed graphically in UML (although they can be specified using OCL).
A particular family situation is shown in Figure 3.

5.2 Family Situation in DAML

The family ontology was translated from UML to DAML using DUET [8], and part of the
resulting DAML ontology is as follows:

<a:Ontology rdf:about="Family"/>

<a:Restriction rdf:about="Family#DUET0"/>

<a:toClass rdf:resource="Family#Female"/>

<a:onProperty rdf:resource="Family#daughter"/>

</a:Restriction>

10



Figure 3: The Family Relationship Situation in UML

<a:Restriction rdf:about="Family#DUET1">

<a:toClass rdf:resource="Family#Person"/>

<a:onProperty rdf:resource="Family#daughterOf"/>

</a:Restriction>

<a:Restriction rdf:about="Family#DUET2">

<a:toClass rdf:resource="Family#Female"/>

<a:onProperty rdf:resource="Family#mother"/>

</a:Restriction>

Relationships are called Properties in DAML, and the usual mechanism in DAML for
specifying domain and range constraints is to impose a Restriction on the relationship.
The particular situation was also translated to DAML as follows:

<f:Male rdf:ID="John"/>

<f:Male rdf:ID="Paul"/>

<f:Female rdf:ID="Lidia">

<f:marriedTo rdf:resource="#John"/>

</f:Female>

<f:Male rdf:ID="Peter">

<f:fatherOf rdf:resource="#Paul"/>

<f:fatherOf rdf:resource="#Lidia"/>

</f:Male>

Note that DAML annotations look very much like ordinary XML documents. In most cases,
it is straightforward to translate from an XML DTD to a DAML ontology. One cannot com-
pletely automate this process because the DTD does not have all the necessary information.
In particular a DTD will not distinguish a class from an association. Nevertheless, a tool
has been developed that assist a developer in the task of converting XML DTDs and XSD
schemas to DAML [16].
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5.3 Family Situation in Slang

The family ontology is written in Slang as follows:

sort Person

op sonOf: Person * Person -> Boolean

op daughterOf: Person * Person -> Boolean

op brotherOf: Person * Person -> Boolean

op sisterOf: Person * Person -> Boolean

op siblings: Person * Person -> Boolean

op brotherInLawOf: Person * Person -> Boolean

op fatherOf: Person * Person -> Boolean

op motherOf: Person * Person -> Boolean

op marriedTo: Person * Person -> Boolean

op male: Person -> Boolean

op female: Person -> Boolean

axiom son_is_male_childOf_his_father is

fa(X:Person,Y:Person) male(Y) & fatherOf(X,Y) => sonOf(Y,X)

axiom sister_female_same_father is

fa(X:Person,Y:Person,Z:Person) female(X) & fatherOf(Z,X) &

fatherOf(Z,Y) => sisterOf(X,Y)

axiom sister_female_same_mother is

fa(X:Person,Y:Person,Z:Person) female(X) & motherOf(Z,X) &

motherOf(Z,Y) => sisterOf(X,Y)

axiom brother_male_same_father is

fa(X:Person,Y:Person,Z:Person) male(X) & motherOf(Z,X) &

motherOf(Z,Y) => brotherOf(X,Y)

axiom siblings_are_brother_sister is

fa(X:Person,Y:Person) brotherOf(X,Y) or sisterOf(X,Y) => siblings(X,Y)

axiom marriage_is_symmetric is

fa(X:Person,Y:Person) marriedTo(X,Y) => marriedTo(Y,X)

axiom brotherInLawOf_male_sibling_of_siblings_spouse is

fa(X:Person,Y:Person,Z:Person) male(X) & siblings(X,Y) &

marriedTo(Y,Z) => brotherInLawOf(X,Z)

The family situation also uses operations and axioms. The operations in this case have
only a domain and no range. Such an operation is just a constant. The situation is as follows:

op John: Person

axiom John_is_male is male(John)

op Paul: Person

axiom Paul_is_male is male(Paul)

op Lidia: Person
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axiom Lidia_is_female is female(Lidia)

op Peter: Person

axiom Peter_is_male is male(Peter)

axiom Peter_is_fatherOf_Paul is fatherOf(Peter,Paul)

axiom Peter_is_fatherOf_Lidia is fatherOf(Peter,Lidia)

axiom Lidia_is_marriedTo_John is marriedTo(Lidia,John)

Having represented the family ontology and situation in Slang, one can then use the SNARK
theorem prover to prove theorems.
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