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Abstract

Real-time distributed systems such as logistical systems, distributed sensor sys-

tems and intelligent highway vehicle systems, are complex dynamic systems that

not only evolve in real-time but also must respond to unanticipated events. Fur-

thermore, these systems require modeling real-world phenomena accurately as well

as solving resource allocation problems for which it is infeasible to find the optimum

solution. Modeling such systems requires combining classical methods for analyz-

ing continuous dynamic systems with methods from computer science for analyzing

discrete systems. Furthermore, new techniques must be introduced that reconcile

these two very different kinds of system, and a new methodology is needed to prove

that systems meet requirements other than the classical optimum or reachability

properties, such as achieving a solution that is “good enough” as well as “soon

enough.” To contribute to this goal, we present an ontology for classifying general

systems. This ontology provides a common terminology for understanding different

kinds of dynamic system. In addition, we propose an outline of how systems such

as real-time distributed resource management systems can be modeled.

1 Introduction

Modeling and simulation of dynamic systems has always been an important issue in
both science and engineering. General methodologies of modeling and simulation were
studied extensively in systems science and general systems theory (cf. [12, 10]), control
(cf. [14, 6]), artificial intelligence (cf. [17]). The systems science approach is based on
the mathematical formulation of a general dynamic system. Most of the scientific effort
in systems science was focused upon quantitative models and automatic quantitative
simulation. The main thrust of the systems science research has been to provide models
that would give accurate representations of the behavior of a real physical system. In
this approach, future behaviors are generated through quantitative simulation which
“executes” a simulation model, typically at fixed time steps, to obtain quantitative values
of state and/or output variables.
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The purpose of this paper is to introduce the notion of a general dynamic systems and
to assess the adequacy of the current modeling techniques for complex dynamic systems
such as real-time distributed systems. We begin by introducing the terminology of general
systems theory in Section 2. The terminology is then used as a means of classifying
general systems in Section 3. Many examples of general systems are described and
classified according to the terminology and classification scheme we introduce. The main
paradigms for modeling such systems are discussed in Section 4, and in the concluding
section we assess the adequacy of these modeling techniques for systems such as real-time
distributed systems.

2 General Systems

A system is a combination of components that act together to perform a function not
possible with any of the individual parts. A system can be either a mathematical system
or a physical system. Modeling or abstraction (cf. [7]) is a relationship between two
systems such that one system abstracts some features of another system, while preserving
certain desirable properties. Abstraction is the “process of suppressing irrelevant detail
to establish a simplified model” [9]. Abstraction levels and viewpoints, together with
their appropriate structuring, lead to clarity and understandability. This is most often
used for the case of a physical system whose behavior is described by a mathematical
system. The first system is called the ground system and the second system is called
the abstract system. The abstract system is said to model the ground system. When the
ground system is a physical system, then it is common to refer to the abstract system
as being the mathematical model. However, both the ground system and the abstract
system can be mathematical systems, and the purpose of modeling is to replace a more
complicated system by a system that is simpler and easier to handle.
Because of the huge variety of systems, it is helpful to classify systems by using

properties that help to distinguish different kinds of system from each other. The rest
of this section introduces some of the most commonly used properties for classifying
systems. The properties introduced below refer only to mathematical systems. However,
it is not uncommon to speak of them as being properties of the system being modeled
by a mathematical system.

2.1 Static Systems

A static system has the property that the current output is entirely determined by the
current input. Mathematically, one can express this as follows.

Definition 1 A static system S is a triple S = (I, O, F ) for which

1. I and O describe the input space and the output space, respectively.

2. F is a global function F : I → O.
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There are several definitions of the notion of a static system in the systems science
literature, but they are generally variations on the Definition 1. For example, [12] allows
the global function of a static system to depend on an “initial state.” In effect, each
initial state determines a static system in the sense defined above. In other words, it is
a parametrized collection of static systems.
It is common for the input and output spaces to have the form of a cartesian product

(or a subset of a cartesian product). For example, the input space might have the form
I = I1 × I2 × . . . × In, where each component Ij is more elementary (e.g., the set of
real numbers or the integers). Each component corresponds to an input variable of the
system. Similar notation is used for the output space.
Compared to dynamic systems (defined below), static systems can be characterized

as systems for which the output depends only on the current input. It is, of course,
unrealistic for a physical system to be static in any of the senses considered above. A
physical system inevitably changes eventually. However, one can abstract away enough
of the features of a physical system for it to be static (or nearly static).

2.2 Dynamic Systems

While a static system is a useful notion, it is not very effective for modeling most physical
systems because they tend change over time. A system is said to be dynamic if it evolves
with respect to some notion of time. Incorporating time into the notion of a system
complicates it a great deal, but the modeling power is substantially greater as a result.
There are several definitions of the notion of a dynamic system in the systems science

literature [12, 10, 14]. The differences between various definitions are primarily stylistic
rather than fundamental. The definition presented below is closest to the one presented
in [16].

Definition 2 A general dynamic system, S, is an 8-tuple

S = (T, I, O,Q, P, F, g,≤),

where

1. T is a totally ordered set with order relation ≤ ⊂ T×T . The ordered set T is called
the time set.

2. I and O describe the input space and the output space, respectively. The input space
is also called the event space, and in this case, elements of I are called events.

3. Q describes the space of inner states (or more simply, the state space) of the dy-
namic system.

4. P is a subset of {p:T → I} such that P is closed under splicing. The splicing
operation is a binary operation on functions p:T → I that produces a new function
by using the first function before a specified time, and a second function after that
time. In other words, the splicing of any two functions p1 and p2 at time t is

p = p1⊥tp2 =
{

p1(τ), τ < t

p2(τ), τ ≥ t.
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The set P is called either the set of input processes or the set of event streams,
depending on whether elements of I are referred to as inputs or events, respectively.

5. A function F :T×T×Q×P → Q, called the global state transition function, which
satisfies these three conditions:

(a) (Consistency) For every t ∈ T, q ∈ Q, p ∈ P, F (t, t, q, p) = q;

(b) (Semigroup) For every t0 ∈ T, t1 ∈ T, t2 ∈ T, q ∈ Q, p ∈ P , if t0 < t1 ≤ t2,
then F (t2, t0, q, p) = F (t2, t1, F (t1, t0, q, p), p);

(c) (Causality) For every t0 ∈ T, t1 ∈ T, q ∈ Q, p1 ∈ P, p2 ∈ P , if p1(τ) = p2(τ),
for every τ ∈ (t0, t1], then F (t1, t0, q, p1) = F (t1, t0, q, p2),

6. g is a function g : T×Q→ O, called the output function.

The most significant difference between a static system and a dynamic system is that
a dynamic system has an internal state that evolves over time and that determines the
output. The structure of the internal state space as well as its evolution function can
be difficult to construct. While the input and output variables of a dynamic system
are “visible” outside the system, the state is, by its nature, hidden within the system.
Sometimes it can be helpful to think of each element q ∈ Q of the state space as being
that part of the history of the system that is sufficient for computing the current output
of the system.
As in the case of a static system, the internal state space Q can be a cartesian product

(or subset of a cartesian product) of simpler components. The individual components
are sometimes called the state variables. The input, output and state variables are
collectively called the system variables. Note that the four conditions that define the
notion of dynamic system constrain the choice of state variables.
The global state transition function F (t1, t0, q, p) specifies the state of the system at

time t1 if the system is in state q at time t0 and the system receives the input process p.
Note that the input process p specifies all inputs over the entire time set. However, the
causality condition specifies that only the inputs between t0 and t1 can influence the state
transition from time t0 to time t1. Furthermore, the consistency condition specifies that
state transitions cannot be instantaneous, which is a natural condition for any realistic
dynamic system.
The splicing property of the input processes gives the flexibility of choosing input

values during any small period of time without any undue restriction on the choices of
input values at earlier or later times. This is particularly important for control models
in which the input values are influenced by the past behavior of the system (i.e., by
“feedback”).
The semigroup condition ensures that one can compute state transitions on any time

interval (t0, t1] either in a single computation F (t1, t0, q, p), or by any sequence of steps
obtained by partitioning the time interval (t0, t1] into subintervals.
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2.3 Time-Varying and Time-Invariant Dynamic Systems

A dynamic system is time-invariant if its behavior is independent of time. Like a static
system, the behavior of a time-invariant system does not explicitly depend on any input
except the current input. However, unlike a static system, a time-invariant system may
have an internal state which can affect the output. A time-varying system is a system
that is not time-invariant. The mathematical model of general dynamic system given by
Definition 2 is for a time-varying system. A time-invariant system can be defined using
a a simplification of that model. Mathematically, a time-invariant system is a dynamic
system for which the following hold:

1. The time set T is a totally ordered Abelian group. In particular, this means that
one can compute the difference t1 − t0 when t0, t1 ∈ T .

2. The global transition function F satisfies the condition: for every ti ∈ T , if t1−t0 =
t3 − t2, then F (t1, t0, q, p) = F (t3, t2, q, p). In other words, F (t1, t0, q, p) depends
only on the difference t1− t0. As a result, F is uniquely determined by the function
F0:T ×Q× P → Q defined by F0(t, q, p) = F (t, 0, q, p).

3. The output function g satisfies the condition: for every t0, t1 ∈ T , g(t0, q) = g(t1, q).
It follows that g is uniquely determined by the function g0:Q → O defined by
g0(q) = g(0, q).

For every time-varying system there is an equivalent time-invariant system obtained
by replacing the state space Q of the time-varying system by T ×Q. In other words, the
variation on time can be transformed into a variation of state by simply incorporating
the time set as an additional state variable. Incorporating the time set as a state variable
does simplify the model, but at the cost of reducing the modeling power. Whatever is
known about the behavior of such a system for time t is unique to this time instant
and cannot be used to predict the behavior of the system at any other time instant.
Nevertheless, it is common to assume that a dynamic system is time-invariant, and we
do so for the rest of this paper.

2.4 Time-Driven and Event-Driven Systems

Time-driven systems change state in response to a uniformly progressing physical time.
The physical time is a global variable that has exactly the same value at any level of
the system. Event-driven systems (cf. [6]) change state in response to the occurrence of
asynchronous discrete events that result in instantaneous state transitions. The state of
an event-driven system is unchanged between event occurrences.
The distinction between these two notions is the result of two fundamentally different

concepts of clocks and time as follows:

1. A clock ticks at a uniform rate (which could be continuous as in physical time,
or discrete as if the clock were a metronome). At every clock tick, an input (also
called an event) e is selected from the input set I. If events occur for only some
clock ticks and not others, then simply introduce a “null event” to represent the
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case of a clock tick having no corresponding event. In this case, state transitions
are synchronized with or driven by the clock ticks. The clock alone is responsible for
(drives) state transitions. For this reason, such a system is said to be time-driven.

2. A sequence of events is presented to the system. These events are not necessarily
known in advance and need not occur at a clock tick. Indeed, there need not be a
clock at all in the usual sense. In such a system, events occur asynchronously. The
notion of time, if it is explicitly defined at all, is simply an index that determines
the position of an event occurrence within the sequence of event occurrences. In
other words, the event stream drives the clock rather than the other way around.
Such a system is said to be event-driven.

The notions of time- and event-driven system are not complementary. A system can
be both time-driven and event-driven. We introduce the term fully-driven for a dynamic
system that is both time-driven and event-driven.
It is helpful to consider some examples to illustrate the distinctions among the three

kinds of system introduced above.

• There are various ways one can model a computer processor. One example is
the RISC (reduced instruction set computer) architecture. In this architecture,
the instructions are simple enough that at every clock tick just one instruction is
executed by the processor. If interrupts are disabled, then such a processor can
be modeled as being time-driven. In this case, the clock is a physical device in
the processor that synchronizes the instruction executions. If some instructions
require more than one clock tick, then one can introduce null events called “wait
states” that allow this system to continue be modeled as a time-driven system. If
interrupts are enabled, then the processor is a fully-driven system since there is now
an asynchronous event stream, in addition to the processor clock, that is driving
the system. If one focuses on just the interrupt stream as being the driver of the
system, then the system can be modeled as an event-driven system.

• Consider next a software system called a compiler. The purpose of a compiler is to
convert an input text file into a program that can be executed by the computer.
To a compiler, the events are syntactic structures occurring in the input text file.
An event occurrence is a particular occurrence of a syntactic structure within the
input text, and the notion of time in this case is simply the position of the syntactic
structure within the input text file. A compiler is just one example of a large
class of system in computer science that takes a “language view” toward dynamic
behavior. Such a system is modeled without there being any direct connection
between physical time and the event occurrences. Introducing physical time into
such a system requires reconciling the fact that there are two very different notions
of time: the abstract time used by the computer program and the “real time” of
the physical world in which computation is taking place.

The impact of the distinction between time-driven and event-driven systems is espe-
cially important when one is composing systems from smaller systems. In time-driven
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systems, the time is a global variable that is the same for every component of a system.
In event-driven systems, on the other hand, every component has a different notion of
time, since the time for a component is determined by the event stream that is presented
to it. So not only is the notion of time different on different levels of a dynamic system,
but the notion of time is different for every component on the same level as well.

2.5 Deterministic and Stochastic Systems

A system is stochastic if at least one of its system variables is a random variable. A
probabilistic framework is required to model the behavior of a stochastic system. Math-
ematically, a stochastic system is a system in which some of the system variables are
random variables.
A system is deterministic if its output variables are all completely determined by the

input and system state. Note that this includes the somewhat inappropriately named
“nondeterministic” systems used in finite state machines (automata) in Computer Sci-
ence. We discuss this class of dynamic system in the next section below.
For every stochastic dynamic system, one can define a deterministic dynamic system

that is equivalent to it. This is done by replacing the state space Q with the set of
probability measures on Q. The notion of a state is then a probability measure, and
state transitions take a probability measure on the original state space Q to another
probability measure on Q. This mechanism is very useful both theoretically and in
practice. However, it has the disadvantage that it replaces a finite-dimensional space by
an infinite-dimensional one.
While a system can have both deterministic and stochastic output variables, if any of

the output variables are stochastic, then the entire system is regarded as being stochastic.
Indeed, since every stochastic system can be converted to a deterministic one (as discussed
above), it may be more relevant to classify systems by whether their system spaces are
finite-dimensional rather than whether they are deterministic.
All physical systems will necessarily have some degree of randomness, so they are all

stochastic systems. However, the stochastic variability might not be significant or might
not be relevant. In this case, it is reasonable to refer to the system as being deterministic,
even though it is only approximately so.

2.6 Continuous and Discrete Systems

If the state variables of a system are real or complex, then the system is said to be a
continuous-state system. If every state variable of a system takes values in a discrete
(possibly infinite) set, then the system is said to be a discrete-state system. A finite-state
system is a special case of a discrete-state system for which the state space is finite.
Note that the word “continuous” here refers only to the type of a state variable and
does not imply that any functions are continuous in the mathematical sense. The term
“continuous” is short for the mathematical term “continuous manifold,” also called a
“real manifold.”
Similar distinctions can be made for the input and output variable of a system. If

all of the system variables are continuous, then the system is said to be a continuous
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system. Similarly, if all of the system variables are discrete, then the system is called a
discrete system. If some of the system variables are continuous and others are discrete,
then the system is called a hybrid system. We consider hybrid systems in more detail in
Section 4.
Note that the time set is not included in the requirement above. In other words, a

continuous system can have a time set that is discrete, and a discrete system can have a
time set that is continuous.

2.7 Continuous-Time and Discrete-Time

The behavior of a dynamic system is described by a totally ordered set of inputs, outputs
and states. By analogy with physical time, the totally ordered set is called the time set
of the system. However, it is not necessary for the system time to have any relationship
to physical time. If the time set T is the real numbers or an interval of real numbers,
then the system is said to be a continuous-time system. If the time set is discrete (i.e.,
the set of integers or an interval of integers), then the system is said to be a discrete-time
system.
The semigroup property of the global transition function F implies that F is deter-

mined by transitions on arbitrarily small intervals. In the case of discrete-time systems,
this means that F is uniquely determined by transitions from the current time to the next
time. Furthermore, the causality condition implies that F only depends on the current
input. As a result, the function F is uniquely determined by a local transition function
f :Q× I → Q.
The analysis above holds whether the dynamic system is continuous or discrete. In

the continuous case, the local transition function is often stated in terms of the difference
between the current state and the new state, and the evolution of the system is given in
terms of a “difference equation.” This is closely analogous to the differential equation
technique for expressing the evolution of a continuous-time system to be introduced
below.
For continuous-time systems, this same analysis can be performed provided that the

global transition function is sufficiently smooth. In particular, this requires that the
dynamic system must be continuous (i.e., the input, output and state spaces must be
continuous). When this is the case, the semigroup condition allows the decomposition
to subintervals of time to be carried out down to infinitesimal intervals. The result is
the “differential” form of the global transition function. If the input process is also
assumed to be smooth, then the global transition function is uniquely determined by a
local transition function f :Q × I → Q just as in the discrete case above. The global
transition function is then determined by the following differential equation:

Q′(t) = f(Q(t), p(t)).

Many authors define continuous dynamic systems using the differential form of the
mathematical model, even though this does not define the most general continuous dy-
namic system. For a continuous dynamic system, if there is a local transition function
f and if it is linear, then the dynamic system is said to be a linear dynamic system.
Continuous systems that are not linear are called nonlinear dynamic systems.
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3 Classification of General Systems

The properties of general systems discussed above, subdivide all general systems along
the following classification dimensions:

1. Dynamics. Two cases: static and dynamic.

2. Driving Type. Three cases: time-driven, event-driven, fully-driven.

3. Randomness. Two cases: deterministic and stochastic.

4. Type of Variables and Linearity. Five cases: finite, (infinite) discrete, continuous
linear, continuous nonlinear, hybrid.

5. Time. Two cases: continuous-time and discrete-time.

In theory, there are 120 cases defined by the classification dimensions above. However,
not all the cases are meaningful or distinguishable from one another.

3.1 Classification of Static Systems

In theory there are 60 kinds of static system determined by the classification above.
However, there are actually only 10 distinguishable possibilities because there is no de-
pendence on time. In particular, there is no significant distinction between continuous-
time and discrete-time or between time-driven and event-driven for static systems. The
following table shows typical functions that are used in static system models. The slots
have been filled in with examples of the kind of function in each case. The examples are
not meant to be exhaustive.

Deterministic Stochastic

Finite Finite Function Finite Random Variable
Discrete Discrete Function Discrete Random Variable
Linear Linear Transformation Stochastic Linear Function
Nonlinear Nonlinear Vector Function Real-Valued Stochastic Function
Hybrid General Function General Random Variable

3.2 Classification of Dynamic Systems

Many combinations of the properties in Section 2, and listed at the beginning of this
section, have their own names, and substantial infrastructures exists for these cases.

• Classical Physics. These systems are characterized by being dynamic, time-driven,
continuous and continuous-time systems. Within this class of system, linear systems
have been studied much longer and are easier to deal with than nonlinear systems.
One common technique for approximating classical physical models is to replace
differential equations with difference equations. In other words, continuous-time is
approximated using discrete-time.
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• Discrete Event Systems (DES). These systems are dynamic, event-driven, discrete
systems [6, page 35].

• Markov Chains. Such a system is a dynamic, event-driven, stochastic, discrete
system. In other words, a Markov chain is a stochastic DES. Queuing theory uses
continuous-time Markov chains, while discrete-time Markov chains have been used
successfully in many diverse areas such as speech recognition and natural language
processing, In the latter application domain, the time set of the Markov chain has
no relationship to physical time.

• Automata. In this case, the system is a dynamic, event-driven, deterministic,
discrete, finite-state, discrete-time system. In other words, a deterministic, finite-
state, discrete-time DES. Automata are often used in Computer Science to model
programs. For this reason, automata are also called finite state machines. One
variation on this class of dynamic system is the “nondeterministic” automaton. In
such an automaton, the local state transition function allows a transition from one
state to an arbitrarily chosen state taken from a set of allowable states. This is very
different from a stochastic dynamic system in which the state transition function
chooses a state according to a probability distribution. In automata theory, nonde-
terministic automata are simply a convenient device for constructing deterministic
automata. One can transform a nondeterministic automaton into a deterministic
one by simply replacing the state space by the power set (i.e., the set of all sub-
sets of the state space). The resulting automaton is considerably more complex
since the state space has exponentially more states than the original. Note that
this mechanism is very similar to the one discussed in Section 2.5 for converting a
stochastic system into a deterministic one.

• Computer. A computer that does not allow interrupts can be modeled as a time-
driven, deterministic, finite-state, discrete-time system. Note that this is not a
special case of automata or even of DES, which are not time-driven. When asyn-
chronous interrupts are allowed, then the model for a computer is fully-driven.

• Real-Time Resource Managers. Systems that manage resources in real-time are
fully-driven, hybrid, continuous-time systems. They may be either deterministic,
as in the case of logistical systems, or they may be stochastic, as in the case of
sensors. These systems are often highly distributed, but that issue is not considered
here.

• Computer Device Managers. The hardware that manages computer devices are
usually deterministic, fully-driven, hybrid, discrete-time systems. These managers
are often called controllers although their role is closer to management than to
control as defined by the control theory literature. They typically have their own
clock hardware, although they can also depend on the processor clock for their
discrete time set. Much of their functionality is determined by the clock, so they
are time-driven. However, they must also respond to asynchronous commands and
other input, so they are fully-driven. While some controllers are purely digital,
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and so qualify to be considered discrete systems, most have to deal with devices
that are not entirely digital, so most controllers are hybrid. Video cards and disk
controllers for a PC are typical examples of such controllers.

• Hysteresis. Systems such as switches and relays have both continuous and discrete
variables. The continuous variables of the system have no time-dependence and so
form a static continuous system. However, a hysteresis system also has a finite state
that is determined by a continuous, asynchronous event process. So such systems
are deterministic, event-driven, hybrid, continuous-time systems.

• Bouncing Ball. A “bouncing” ball traveling in a room will change its velocity
discontinuously when it hits a boundary. Such a system is deterministic, time-
driven, hybrid and continuous-time.

The properties in Section 2 classify the dynamic systems into 60 cases shown in the
following two tables, in which “discrete” is short for “infinite discrete.”

Deterministic

Event-Driven Time-Driven Fully-Driven

Finite, Discrete-Time Automata Computers Computers
Finite, Continuous-Time DES
Discrete, Discrete-Time DES Device Managers
Discrete, Continuous-Time DES Device Managers
Linear, Discrete-Time Physics
Linear, Continuous-Time Physics
Nonlinear, Discrete-Time Physics
Nonlinear, Continuous-Time Physics
Hybrid, Discrete-Time Device Managers
Hybrid, Continuous-Time Hysteresis Bouncing RTDRM

Ball (Logistics)

Stochastic

Event-Driven Time-Driven Fully-Driven

Finite, Discrete-Time Markov
Finite, Continuous-Time Markov
Discrete, Discrete-Time Markov
Discrete, Continuous-Time Markov
Linear, Discrete-Time Physics
Linear, Continuous-Time Physics
Nonlinear, Discrete-Time Physics
Nonlinear, Continuous-Time Physics
Hybrid, Discrete-Time
Hybrid, Continuous-Time RTDRM

(Sensors)
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4 Paradigms for Modeling Fully-Driven and

Hybrid Dynamic Systems

The problem of modeling fully-driven dynamic systems requires that one reconcile the two
different notions of time that are driving the system. This problem has been addressed
by hybrid systems research where the issue was apparently first observed and techniques
were developed for dealing with them. In this section, we discuss the approaches that have
been developed for hybrid system modeling, with emphasis on those modeling techniques
that are most useful for modeling fully-driven dynamic systems. Most of the treatment
in this section was derived from [2].
There are five basic approaches (or paradigms) for studying hybrid systems. One can

either suppress the hybrid nature of the system and convert it into a purely discrete
or purely continuous system, or one can combine the power of the two kinds of system
by treating the system as a continuously interacting set of automata or a discretely
interacting set of continuous systems, or a combination of these two. More specifically,
the approaches are as follows:

1. Aggregation. Suppress the continuous dynamics. This is the most common ap-
proach in the literature (e.g., [5]). There are many drawbacks to this approach:

• Nondeterminism. The automaton one obtains is usually nondeterministic (see
[1]). While nondeterministic automata can be converted to deterministic au-
tomata (as in Section 3.2), the resulting automaton is more complex, and the
analysis of such an automaton produces much weaker consequences.

• Nonexistence. There may not be any finite automaton that adequately models
the behavior of the ground system.

• Partition Problem. Even when a finite automaton exists, it can be a very deep
and difficult problem to find one such that it adequately models the ground
system.

Generally speaking, aggregation can be fully carried out only under strong assump-
tions on the hybrid system.

2. Continuation. This is the opposite of aggregation (cf. [4]). The discrete variables
are converted to continuous ones so that the system becomes a purely continuous
one. The fact that there are simple continuations of finite automata, pushdown
automata and Turing machines makes this approach more compelling than aggre-
gation. However, it also has serious drawbacks:

• Arbitrariness. How the continuation is accomplished is largely arbitrary, and
care must be taken to insure that the continuation does not introduce behavior
that is an artifact of the continuation.

• Complexity. Continuation does not eliminate inherent complexity. The com-
plexity is simply shifted to another part of the system where it must eventually
be dealt with.
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• Artificiality. It can lead to an unnatural analytical loop of going from discrete
to continuous and back to discrete.

3. Automatization. Model the system as a collection of automata interacting within
the framework of a time-driven continuous dynamic system (cf. [13]). The main
difficulty with this approach is the inherent incompatibility between the event-
driven nature of the automata and the time-driven nature of the dynamic system
that connects the automata with each other. There are two main ways to reconcile
this incompatibility:

• Force synchronization at regular clock ticks.

• Attach elapsed times to discrete event transitions.

This paradigm includes notions such as timed automata and qualitative dynamic
systems.

4. Systemization. (e.g., [3]) This is the opposite of automatization. In this case,
the component systems are continuous dynamic systems that interact within the
framework of an automaton. As with automatization, it is still necessary to recon-
cile the incompatibility between the time-driven components and the event-driven
framework. The main ways to achieve this reconciliation are:

• Force a uniform timing structure via “timing maps.”

• Sequentially synchronize the continuous dynamic systems at event times when
the dynamic systems enter prescribed subsets of the state space.

In the latter technique above, the synchronization points are of two kinds:

(a) A jump or impulse is a discontinuous change in the state as a result of entering
a prescribed subset of the state space. The “bouncing ball” system is an
example of a system with jump discontinuities.

(b) A switch is a discrete change in the dynamic system as a result of entering
a prescribed subset of the state space. This is a more dramatic discontinuity
than a jump, for it causes the entire dynamic system to be replaced by another
one. An example of a switch is a hysteresis model. Such a model has a discrete
“memory” that determines which transition function is applied at any given
point in time.

5. Hybridization. (cf. [13]) This is a combination of the two previous approaches.
Such a model contains both automata and dynamical systems. This model is the
basic model used in the Hybrid Systems community (cf. [8]). In this model, discrete
systems, represented by finite automata, and continuous systems, represented by
ordinary differential equations, interact through two kinds of interface, a digital-
to-analog (DA) or an analog-to-digital (AD) interface. One of the issues in this
approach is how to specify the two kinds of interface. The dynamical system’s
output must be unified with the finite automaton’s input (and vice versa). This

13



unification process is not a simple matter. One way to approach this problem is
to define the interfaces through abstraction. Abstractions of dynamical systems
were investigated, for instance, in [15]. In [11] a AD interface was specified as an
abstraction of a general dynamic system so that an associated automaton can be
constructed that is provably consistent with the underlying GDS. The shortcoming
of this approach is, as we mentioned earlier, the lack of good tools for analyzing
such hybrid systems.

5 Proposal for Modeling Fully-Driven

Hybrid Dynamic Systems

The paradigm that appears to be the most effective for modeling fully-driven systems is
hybridization, which combines automatization and systemization. While this paradigm
has been effective for modeling many hybrid systems, it does not completely address
several important issues that arise in real-time systems, especially in real-time systems
that involve one or more of the following:

1. Resource management and other intractable computational problems. It could
be known that an optimal solution to a problem exists, and it may be easy to
check that a solution is optimal once the solution has been found. However, the
problem of finding the solution may be intractable, as in NP-complete problems.
Many resource allocation problems are NP-complete and so are intractable in this
sense. As a result, optimization is no longer feasible even when an optimum exists,
and some other criterion for adequacy of a solution is necessary. The best known
example of such criteria are the “good enough, soon enough” criteria, in which a
suboptimal solution is used if it meets specified minimal requirements and if it can
be computed before a deadline is reached.

2. Distributed systems with limited communication. Multiple autonomous systems
that communicate over a network are not fully modeled by dynamic systems for
which there is a single event stream, but one can obtain a reasonable model when
the network is reliable and has high bandwidth. However, when the network is
very widely distributed or when communication channels are unreliable and have
limited bandwidth, then it is no longer adequate to model the system using a
single global state and a single event stream. It is no longer possible for any one
node of such a network to have global knowledge of the state of the entire system.
Furthermore, communication becomes a resource that must be allocated along with
other resources.

3. Self-awareness. Generally speaking, the dynamic systems literature does not con-
sider systems that know their own structure and can restructure themselves in
response to changing requirements.

We now outline a proposal for how to address the inadequacies above. Our proposal
has three main components which we introduce here, and then we elaborate on each of
them in the rest of this section:
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1. Models of Continuous Dynamic Systems. Modeling languages such as the Unified
Modeling Language (UML) do not currently include any diagrams that can express
continuous-time, time-driven or stochastic systems. We propose to use extended
data-flow diagrams to model these kinds of system. Data-flow is also useful for
modeling distributed systems.

2. Mixed Modeling Strategy. In Section 4 a strong case was made that simply reducing
to either a purely discrete or a purely continuous system is not an effective modeling
technique for hybrid systems. The techniques that have proven to be effective for
modeling hybrid systems mix discrete and continuous by using a continuous model
of discrete components and by using a discrete model of continuous components.
Accordingly we propose using a mixed modeling strategy in which the components
of a discrete model (such as an automaton) may be continuous and vice versa.

3. Reflection. The modeling language must allow its own structure to be included
within the model. This can be accomplished by using reflective modeling languages
and tools.

5.1 Models of Continuous Dynamic Systems

The first important step in modeling fully-driven systems is to support the modeling of
continuous and time-driven systems. Many modeling languages already exist for modeling
such systems, some of which are even executable. However, these modeling languages
are not currently integrated with UML whose behavioral diagrams are limited to au-
tomata. This is essential for supporting the mixing of both time-driven and event-driven
components in the same diagram.
As a first step toward better integration, we propose adapting and extending data-flow

diagrams as a means of modeling time-driven and continuous dynamic systems. While
data-flow diagrams are not equivalent to dynamic systems diagrams, we are investigating
the extensions that will be needed to achieve the appropriate semantics.

5.2 Mixed Modeling Strategy

Top-down design, also known as the “divide-and-conquer” design strategy is a commonly
used technique for dealing with design complexity. However, in most modeling languages,
the same design language is employed at every level of detail. As a result, top-down
elaboration is only a means of communicating and understanding (which are certainly
important) and not an element of the design language. In principle, the whole model
could be expressed on a single, very complex, level.
We propose to use top-down elaboration as a means of mixing distinct modeling

languages and formalisms. In such a model, the elaboration is not just a convenience,
and it is not possible, even in principle, to express the model on a single level. The
modeling languages we are especially interested in are the discrete modeling languages
(such as statecharts and activity diagrams) and the continuous modeling languages (such
as the model of continuous dynamic systems discussed in the previous subsection above).

15



Mixing modeling languages is not simply a matter of allowing both to be used in
the same modeling tool. It is important to reconcile the differing notions of time that
drive the system. This reconciliation is accomplished by specifying conditions for event
transitions as follows:

• A continuous component in a discrete system is synchronized at event times within
the discrete system which can be triggered in several ways:

1. An input event of the discrete system causes a change of state. This is the
normal way in which a discrete event system changes state.

2. The current state of the continuous component enters a prescribed subset of
the state space.

• A discrete component in a continuous system changes its state as a result of the
following kinds of event:

1. At regular clock ticks determined by the continuous system.

2. After an elapsed time determined by the amount of computation performed
by the discrete systems.

5.3 Reflection

One of the themes that underlies the inadequacies in the list at the beginning of this
section is “computational reflection.” By this we mean that the dynamic system includes
its own computation within its model of itself. This is most clearly stated in the case
of self-awareness, but it is fundamental in the other issues as well. By emphasizing
optimal solutions and ignoring the cost of computing an optimal solution, the literature
on hybrid systems fails to recognize that optimality may be undesirable. This is the
result of separating the mathematical model of a system from the system being modeled.
When the mathematical model is embodied in a computer program, then the program
becomes part of the system being modeled, and it must be modeled (and controlled)
along with the physical system.
The hybridization paradigm is a powerful modeling approach, but it is not reflective.

The modeling language must allow its own structure to be included within the model.
To accomplish this objective the modeling language must include:

1. Formal specifications of the system components and how they interact with one
another.

2. A meta-level for component specifications that allows the system to examine and
reason about the specifications at run-time.

6 Conclusion

In this paper we have introduced the notions and terminology of general systems and
used this terminology as a means of classifying general systems. Effective techniques are
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available for modeling and analyzing many of the classes of general system that we have
described. However, real-time distributed resource management and other fully-driven
hybrid dynamic systems cannot be adequately modeled using existing methodologies and
tools. Yet the existing methodologies are very powerful, so it makes sense to try to build
on these methodologies whenever possible. Accordingly, we have outlined a proposal for
how to build on existing methodologies to model and analyze fully-driven hybrid systems.
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