Alternative Formalizations of Aggregations and
Associations in UML

Jeffrey Smith', Mieczyslaw Kokar? and Kenneth Baclawski?

! Sanders, a Lockheed Martin Company
2 Northeastern University

Abstract. The UML specification contributors have made great strides
in defining semi-formal semantics, with a combination of meta-language,
constraint specification and text, in the UML Semantics Guide. Improve-
ments in these semi-formal UML semantic descriptions are needed to
convey a rigorous semantic representation and provide tool support to
verify UML Diagrams against an unambiguous specification of UML se-
mantics. We describe a step towards improvement of UML semantics
by 1) formalizing the (meta)objects in the UML Semantics Guide using
the Slang formal methods language and 2) translating UML Diagrams
into a Slang form compatible with our UML formalization. We focus on
various specifications of aggregation and association formalizations, to
distinguish their semantic differences, with a rationale and partial formal-
ization for recommended and alternative association/aggregation formal-
izations. We then give a specific example of the association/aggregation
formal translation and specification process. In this example, we ver-
ify that an automatically generated Slang form of a UML Diagram is
consistent with our formalization of UML Semantics.

Keywords - UML specification, formalization and translation, formal methods.

1 UML Formalization Process

The UML specification contributors have defined semi-formal semantics, with a
combination of meta-language, constraint specification and text, in the UML Se-
mantics Guide. Improvements in these semi-formal UML semantic descriptions
are needed to 1) convey a more rigorous semantic representation and 2) pro-
vide tool support to enforce and verify UML Diagrams against an unambiguous
specification of object-oriented semantics. This paper describes a step towards
improvement of UML semantics.

Our UML semantic formalization process is shown in Figure 1. Although,
the Slang formal methods language [W+98] is used to give formal specifica-
tion language examples and references, the concepts described in this paper can
be attributed to any algebraic/category theory based formal language. Since
UML is described in UML, Transition 1 describes the formalization of UML

(meta)objects in Slang, with a rationale for each formalization rule and a de-
scription of formalization rule alternatives. Transition 2 shows the tool support
needed to automatically translate UML applications (described as the UML
Graphical Domain) to Slang. In Transition 3, we check that instances of the
Slang form of the UML Graphical Domain are compatible with our Slang repre-
sentation of abstract UML theory, viz. the UML Formal Semantics in Figure 1.
Transition 4 shows the check of UML semantics and constraints performed within
a Computer-Aided Software Engineering (CASE) tool. We will show that there
is an satisfaction relation, that follows from our formalization process, between
the UML Graphical Domain and Formal Semantics.

An entire UML formalization is too lengthy a topic for this paper. We will

UML Graphical Domain L ‘ UMI. Semantics
{Application in UML form) ‘ 4. CASE check of semantics/constraints ‘ (UML Semantics Guide contents)
»

".5. Check semantics 1. Derivation of UML-Slang

2. Automatic wjth translation tool formali zati on using the

rules (with rationale and

trade-offs)
v i h 4
UML Formal Domain | | UML Formal Semantics
(Application in Slang form) | 3. Check axioms | (UML semantics in Slang form)

Fig. 1. UML Semantic Formalization Process

describe a formalization of aggregation and association, not only to show an ex-
ample of our process, but also to contribute a semantic distinction between these
two relationships since “there is no single accepted definition of the difference
between aggregation and association used by all methodologists” [MF97]. Fig-
ure 2 shows the subset of the UML Semantics Guide Core Package-Relationships
Diagram [UMLSEM], that we will address in this paper.

Our approach has been to formalize UML in category theory in a manner
that closely follows the UML Semantics Guide. Alternative approaches generally
formalize by mapping concepts in UML to a priori constructs such as “has-a”
and “part-of” that don’t necessarily follow UML very closely for two reasons:
(1) UML treats aggregation as a property of one of the association ends of an
association rather than as a separate modeling primitive. (2) There are several
notions of UML aggregation, but there is just one “part-of” modeling primitive.
The following sections will trace each of the steps of Figure 1 for a UML appli-

cation, demonstrating how we use a Slang form of UML semantics to verify that
UML Diagrams are consistent with UML specifications.

ModelElement

name: Name
VAN

Generalizabl eElement Association
isRoot: Boolean

isLeaf Boolean 1
isAbstract: Boolean

connection| 2. *{ordered}

AssociationEnd
type associationEnd| jsNavigable: Boolean
Classifier | 1 *| isOrdered: Boolean
sineciﬁcatmn Pamﬂpaﬂ: aggregation: AggregationKind

multiplicity: Multiplicity
changeable: ChangeableKind
targetScope: ScopeKind
name: String

Fig. 2. Aggregation and Association Portion of UML Core Package-Relationships Di-
agram

2 UML/Slang Formalization

This section describes how to formalize Diagrams from the UML Semantics
Guide in an algebraic/category theory based specification language. UML to
formal specification translation is broken into a modular set of rules to break
this large problem into chunks.

2.1 Specifications in Slang

The following, from [Spe98|, gives a brief overview of specifications expressed
in Slang. Specifications are the fundamental objects in Slang. A specification is
viewed as a presentation or description of a theory. A specification is a finite
expression that describes a potentially infinite set of strings of symbols that
are within the language of a theory and a subset of this set of strings that are
valid within a theory. Legal sentences are described by signatures, providing a
presentation of sorts and operations that the theory deals with. Signatures are
made up of sorts (a declaration of the classes of objects in the specification),
ops (ops are short for operations - a declaration of named constants that denote
objects, functions and predicates of specified sorts) and sort axioms (an assertion
of the equivalence between a primitive sort and a constructed sort).

Specifications form a category called Spec. The objects in this category are
specifications (Specs) and arrows are such morphisms that map sorts to sorts,
operations to operations, and axioms to theorems. Specifications are either given
as basic specifications of these sorts, ops, axioms and theorems, or built with
translate, import or colimit specification-building operations. Translate creates a
copy of a specification, sometimes renaming some components. Import enriches
a specification with new sorts, operations, axioms and theorems - similar to
a programming language include. A colimit is used to combine specifications,
taking a diagram of specifications as an input and yielding a specification that
contains all the elements of the specifications in the diagram.

2.2 Background Formalization Rules

We begin with some background formalization rules used by the subsequent
formalizations of associations and aggregations.

Object - Spec Rule. Every Model Element in UML, specified in the UML
Semantics Guide, translates to a Spec containing a sort, both having the same
name as the Model Element. Import a CLASS Spec if the Model Element repre-
sents a class and an OBJECT Spec if the Model Element represents an object.
To make a lexical distinction between a Spec and a sort name, the sort name
will begin with a capital letter and then will use lower case for the remaining
characters of the name, while the Spec name will use all upper case letters.

There are only two choices for an object in a specification language supporting
category theory: a Diagram or a Spec. Of these two choices, only Spec supports
the Import declarations we need to support a modular translation. The Spec
choice also permits more degrees of freedom than Diagram because one can also
associate operations (and other constructs not possible with Diagrams) with a
Spec. Specs are the fundamental objects in Slang. They are used to describe
domains, data structures and programs, at multiple levels.

OCL Constraints to Op/Axiom Rule. For each OCL constraint, add an
associated op in the Spec corresponding to the UML object that contains this
OCL constraint. Specify the constraint in an axiom associated with the op.

A constraint defines a relation. In Slang, relations are defined as ops with
Boolean as their domain. For this reason, in order to specify an OCL constraint
in Slang, we first have to specify a boolean op and then specify the constraint as
either an axiom or definition associated with this op. We specify the constraint
with axioms because, unlike definitions, they restrict the Spec they are defined
in. This follows since the objective of OCL is to restrict operations on objects.
Definitions are only used for naming purposes.

Attribute Rule. For every class/object that includes an attribute, distinguish
the class/object Spec by adding the suffix ”-BASE” to the class/object name

and the sort of the same class/object name (identified in the ModelElement-
Spec translation rule), as well as to everywhere the sort of the same class/object
name is referenced in the class/object Spec (e.g. those referenced in the OCL
Constraints to Op/Axiom translation rule). Translate each attribute to a sepa-
rate Spec, whose name is prefixed with the attribute name and postfixed with
"-ATTRIBUTE” (note this attribute Spec also has a sort of the same name).
Each attribute Spec includes an op, where the domain of the op is the attribute
name, prefixed by ”this_” and the range of the op is the sort (type) of the at-
tribute. Translate each class/object, that included the attribute, to a separate
colimit Spec, whose name is the name of the class/object. This colimit Spec
maps each attribute’s sort, identified in the separate attribute Specs, to the
class/object sort and each op, prefixed by ”this_” in the attribute Spec, to the
attribute name.

An attribute takes an object name and returns information about the object.
The reason for a separate attribute Spec is for consistency with the ModelElement-
Spec translation rule, since an attribute is also a model element. Another reason
is to handle attributes in a similar fashion as associations and generalizations.
All three cases involve circular references, since the attribute, association and
generalization model elements also use attributes, associations and generaliza-
tions in their specifications. Associations and generalizations were modeled as
separate Specs, so it make sense to handle attribute specification similarly. The
reasoning behind the renaming of classes/object Specs and sorts that include
attributes is so that the colimit, unifying the attributes and classes/objects,
can have a Spec name and sort of the same class/object name (just as Specs
of class/objects without attributes). This is also important since the aggrega-
tion, association and generalization Specs expect to use these sorts of the same
class/object name, whether the class/object has attributes or not.

Note that although an op (in the attribute Spec) can only map to a single
sort, one can formalize multiple valued attributes and attributes that are not
defined everywhere by mapping to a structured sort.

Import for Attribute - Op Rule. For each attribute (sort) that is referenced
by a Spec, but not defined in the Spec, import the Spec in which this attribute
is defined using the Attribute - Op Rule.

Prior OMT formalization research [DeL.96,BC95] identified a similar rule sta-
ting, “If D references a separate class specification, then the specification for D
is included into the class specification.” Our assumption is that the included
class specification is already defined algebraically and includes a specification
of a sort of the same name as the class specification. Any possibility of infinite
recursion, resulting from Specs mutually referring to each other, is eliminated
with type checking. The purpose of this rule is to support attribute definitions
that use externally defined classes (needed for modularity) and is necessary to
type check a formal language specification.

2.3 UML Association Formalization Rule

Association - Association Instance Spec Rule. Translate each association
to a separate instance of the ASSOCIATION Spec which imports pairs of AS-
SOCIATIONEND Specs, filling in each of the association end constraints in the
association instance Spec.

The motivation to use this translation rule is to closely resemble the UML
Semantics Guide, where an association is a set of tuples relating two classifiers.
An association consists of at least two association ends, each of which repre-
sents a connection of an association to a classifier. This translation rule uses the
UML intended structure. As a result, associations and association ends are also
translated to Specs. This seems apt since we're translating objects to Specs and
Associations and AssociationEnds are meta-objects in Figure 2.

Formalization. The following describes the ASSOCIATIONEND, CONNEC-
TION and ASSOCTATION Specs that will be used in an example that follows.

spec ASSOCIATIONEND is

import MODELELEMENT, MODELELEMENT-SET

sorts AssociationEnd, Aggregate, Changeable

sort-axiom Changeable = String | chgb?

op chgb? : String -> Boolean

axiom chgb?(x) <=> (x = "none" or x = "frozen" or x = "addOnly")

sort-axiom Aggregate = String | aggr?

op aggr?: String -> Boolean

axiom aggr?(x) <=> (x = "none" or x = "aggregate" or x = "composite")

op isNavigable: AssociationEnd -> Boolean

op isOrdered: AssociationEnd -> Boolean

op name: AssociationEnd -> String

op aggregation: AssociationEnd -> Aggregate

op multiplicity: AssociationEnd -> Nat

op changeable: AssociationEnd -> Changeable

op type: AssociationEnd -> String % string contains Classifier AE is connected to
% op targetScope: will be resolved with resolution of rules to translate
% classifiers and instances. Qualifier, specification associations are left unspecified.

op firstend: AssociationEnd -> Name

op otherend: AssociationEnd -> Name

end-spec

spec CONNECTION is
% CONNECTION is pair of association ends
import ASSOCIATIONEND
sorts Connection
op make-connection: AssociationEnd, AssociationEnd -> Connection
op first: Connection -> AssociationEnd
op second: Connection -> AssociationEnd
axiom first(make-connection(d, e)) = d
axiom second(make-connection(d, e)) = e
constructors {make-connection} construct Connection
theorem p = make-connection(first(p), second(p))
end-spec

spec ASSOCIATION is

import GENERALIZABLEELEMENT, CONNECTION

sort Association

sort-axiom ModelElement = Association

op name: Association -> Name % OCL 1 - uniqueness of this name within the
% enclosing namespace for sort Name is enforced within the NAMESPACE specification

op assocOCL2: Connection -> Boolean % OCL 2 - at most 1 association end be an association or aggregate

axiom assocOCL2(A) <=>

(relax(aggr?) (aggregation(first(A))) = "aggregation") or
(relax(aggr?) (aggregation(first(A))) = "composite")=>(relax(aggr?) (aggregation(second(4))) = "none"

% OCL 3 - not possible yet because an association can only have 2 ends in our restricted UML spec
% OCL 4 - not needed because the connected classifier of association ends will be

% included in the namespace of association by construction
theorem commutivity-of-symmetric-association is ((first(a) = second(b) & first(b) = second (a)) => a = b)
end-spec

spec ASSOCIATION-COLIMIT is
translate colimit of diagram
nodes TRIV, SET, CONNECTION
arcs
TRIV -> SET : {},
TRIV -> CONNECTION : {E -> CONNECTION}
end-diagram
by {Set -> Association}

Aggregation - Aggregation Instance Spec Rule. Treat aggregation as
an association translation, labeling the association end corresponding to the
aggregate end (the side with the hollow or filled in diamond) with the type of
aggregation.

An UML aggregation and a colimit model a “part-of” relationship. If B is
a part of A, then B belongs to A. This is contrasted with an association, or
“is-a” relationship, where if B is associated with A, then the B-A relationship
belongs to the superspec that imports this relationship. Aggregation is a special
type of association. Note, there is no aggregation meta-object in the UML se-
mantics specification. Aggregation (and type of aggregation) is an attribute of
the association ends that make up an association. By selecting an association
translation rule first, we have a singular choice when choosing this translation
rule. In our Association translation Rule, and in UML, an aggregation is an as-
sociation where one of the ends of an association connection is marked with the
type of aggregation. It is marked as aggregate if the other end, or part, may be
contained in other aggregates. It is marked as composite if the other end may
not be part of any other composite.

3 UML Graphical to Formal Domain Translation

This UML Graphical to Formal Domain translation was depicted as Transition 2
in Figure 1, where we provide support to translate a UML application to a Slang
form of the same application, following the previously defined translation rules.
In this association/aggregation example (Figure 3), a Lecture is a collection
of Student, ordered by ID. There is a one-to-one association with a Course,
depending on the Lecture level. The translation of this UML Diagram to Slang,
according to the prior semantic formalization rules, looks like the following.

spec LECTURE is

import CLASS, PRESENTATION

sort Lecture

axiom name(Lecture) = "Lecture"
end-spec

spec COURSE is

import CLASS

sort Course

axiom name(Course) = "Course"
end-spec

1

/
////////
/
/
/

level
ey
Lecture
- student_collection
1 \\\\\\\\\\\\
—_—

student{ordered}| Student
1 ID: Wat

Fig. 3. UML Association and Aggregation Translation Example

spec STUDENT-BASE is

import CLASS

sort Student-base

axiom name(Student-base) = "Student"
end-spec

spec ID-ATTRIBUTE is

sort ID-attribute

op this_ID: ID-attribute -> Nat
end-spec

spec Student is

translate colimit of diagram

nodes ONE-SORT, STUDENT-BASE, STUDENT-ATTRIBUTE
arcs

ONE-SORT -> STUDENT-BASE: {x -> Student-base},

ONE-SORT -> STUDENT-ATTRIBUTE: {x -> Student-attribute}
end-diagram

by {Student-attribute -> Student-base, this_Student -> Student}

spec LECTURE-STUDENT-AGGREGATION is
import ASSOCIATION
sort Lecture-Student-Aggregation
axiom multiplicity(first(Lecture-Student-Aggregation)) = 1..1
axiom name(first(Lecture-Student-Aggregation)) = "student_collection"
axiom relax(aggr?) (aggregation(first(Lecture-Student-Aggregation))) = "aggregate"
axiom firstend(first(Lecture-Student-Aggregation)) = Lecture
axiom name(second(Lecture-Student-Aggregation)) = "student"
axiom otherend(second(Lecture-Student-Aggregation)) = Student
axiom isOrdered(second(Lecture-Student-Aggregation)) = true
end-spec

spec LECTURE-COURSE-ASSOCIATION is

import ASSOCIATION

sort Lecture-Course-Association

axiom multiplicity(first(Lecture-Course-Association)) = 1..1

axiom name(first(Lecture-Course-Association)) = "level"

axiom firstend(first(Lecture-Course-Association)) = Lecture

axiom multiplicity(second(Lecture-Course-Association)) = 1..1

axiom otherend(second(Lecture-Course-Association)) = Course

axiom relax(chgb?) (changeable(second(Lecture-Course-Association))) = "frozen"
end-spec

{I’m thinking about adding an association colimit here}

4 Check UML Formal Semantics

{ this part needs to be amended/replaced with our current thinking }

In Transition 3 in Figure 1, we are trying to verify that the Slang form
of our application is an instance of the UML abstract theory described in the
UML Formal Semantics. This verification process checks whether the application
satisfies the axioms in the UML Formal Semantics.

Continuing with the example begun in the last section, let’s focus on the
LECTURE-COURSE-ASSOCIATION Spec. If the association ends were re-
versed in a new Spec, where the first end was connected to Course and the second
end were connected to Lecture, then we can prove that the meaning of the two
symmetric associations are the same by virtue of the commutivity-of-symmetric-
association theorem in the ASSOCIATION Spec: theorem commutivity-of-symmetric-
association is ((first(a) = second(b) & first(b) = second (a)) — a = b)

Another example is the check of the satisfaction of the multiplicity constraint,
where we check whether the multiplicity of the aggregation of the first end of
the association between a Lecture and a Student, which is 1, is compatible with
the sort of multiplicity allowed for this attribute. Note that an association (or
aggregation) is a pair (Spec CONNECTION) of ASSOCIATIONEND Specs.
Associations include sets of these connection pairs. The range of the multiplicity
op in the ASSOCIATIONEND Spec is of type Nat, which is compatible with 1.

Similarly, the name of the firstend is “student_collection”, is compatible
with the range of the name op of the ASSOCIATIONEND Spec, which is of
type string. The aggregation of the firstend is “composite”. The associated
aggregation axiom in the ASSOCIATIONEND Spec specifies that aggregation
must not only be of sort string, but of subsort “none”, “aggregate” or “com-
posite”. This check that a UML Formal Domain is an instance of the UML
Formal Semantics may be performed for any application.

5 Check UML Graphical Domain

Typically, one is dependent on a CASE tool to check that a UML Diagram
doesn’t violate UML semantics as part of the Diagram construction process (as
in Transition 4 of Figure 1). The problem is that CASE tools don’t enforce a
complete set of UML Semantics Guide specifications and constraints. For in-
stance, there is typically no difference between a one-to-one association or ag-
gregation relation in a CASE model file. The satisfaction relation, in Transition
5 of Figure 1, is implicit in our formalization process since there is an satisfaction
relation between the UML 1) Graphical and Formal Domain, 2) Formal Domain
and Formal Semantics and 3) Semantics and Graphical Domain.

6 Future Research

In addition to the translation from UML to Slang, Smith and DeLoach have
built a translator that automatically translates from UML directly to O-Slang.

O-Slang is an object-oriented form of Slang that DeLoach had built in [DeL96].
This translation tool includes both static class and behavior (state) translation.

The translation rules given in this paper are a subset of a larger research
effort which currently includes only static class formalizations. Other portions
of this research will be addressed in subsequent papers, due to the size of each
formalization. This research effort will implement axioms to capture more of the
semantic/OCL constraints and some form of the behavioral portion of the UML
Semantics Guide.

{ Add more references e.g. Lano here }

References

[UMLSEM] Booch, G., Rumbaugh, J., Jacobsen, 1.. UML Semantics, Version 1.1,
Rational Software Corp., Sept. 1, 1997.

[W+98] R. Waldinger et al.: Specware Language Manual: Specware 2.0.2, 1998.

[BC95] Bourdeau, R., Cheng, B.: A Formal Semantics for Object Model Diagrams,
IEEE Transactions on Software Engineering, 21(10):799-821, Oct. 1995.

[Del96] S. DeLoach: Formal Transformations from Graphically-Based Object-Oriented
Representations to Theory-Based Specifications, PhD Thesis, Air Force Insti-
tute of Technology, June 1996, PhD Dissertation.

[MF97] M. Fowler: UML Distilled, Addison Wesley, pg. 80, 1997.

[Spe98] Specware Language Manual, Version 2.0.3, March 1998.

