Control Theory-Based
Foundations of Self-

Controlling Software

Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar, Northeastern University

LGORITHMSWITH EMBEDDED
control and adaptation are common in soft-
ware systems. Some examples are

» software for dynamically adjusting a
database-management system’sbuffering
strategy,

 routing algorithms for networks,

* load-balancing algorithmsfor distributed
computer systems,

» graphical user interfacesthat adapt to the
user, and

 caching strategies for OS memory man-
agement.

All these software subsystems interact with
an environment that could betheexternd phys-
ical world or another layer of thecomputer sys-
tem. Such environments can be characterized
asdynamic systems. Theessenceof adynamic
systemisthat itsoutput dependsonthesystem’s
dete. So, the system doesnot shift drameatically
from one output to another (in response to
changesin theinput) but exhibits someform of
inertia (because of the dependence on state).
When designing a software system that inter-
acts with a dynamic environment, software
engineersneed to takeinto account thedynamic
characterigticsof theenvironment and computer
system, or the system might behave differently
from what the engineer expected.

THE AUTHORS’ CONTROL THEORY-BASED PARADIGM GIVES A
FRAMEWORK FOR SPECIFYING AND DESIGNING SOFTWARE
THAT CONTROLS ITSELF AS IT OPERATES. BASED ON THIS
PARADIGM, THEIR SELF-CONTROLLING SOFTWARE MODEL

SUPPORTS THREE LEVELS OF CONTROL. FEEDBACK,
ADAPTATION, AND RECONFIGURATION.

In computer systems, the first observed
form of inertiawaslocality of reference. This
property has been exploited heavily ever since
in both hardware and software. Hardware
devices use caches and buffers to exploit
locality of reference. Operating systems use
locality of reference to improve the perfor-
mance of virtual memory and file systems.
Communication networks have two kinds of
locality of reference. Physical locality of ref-
erenceisthetendency for communication to
be between computersthat are physically near
oneanother. Temporal locality of referenceis
the tendency, once a pair of computers has
communicated, for that pair to communicate
again in the near future, and then repeatedly.

In spite of the obviousanal ogy of software
systems to control systems, the basic para-
digm of control has not found its place as a

first-class concept in software engineering.
For instance, Mary Shaw and David Garlan
use the control architecture to identify an
architectural stylethat they call the process-
control paradigm.2 However, they consider
the possibility that only the controller that
controlsaphysical system (in control termi-
nology, such acontrolled systemiscaled a
plant) isimplemented in software. They do
not consider a plant that is itself software.
Also, they do not go beyond the basic con-
trol model.

Control theory generally concernssystems
that repeatedly interact with theworld through
a sense-response-act loop. Applications that
can exploit this pattern are common in soft-
ware engineering. Two examplesaretheread-
evaluate-print loop of traditional batch pro-
cessing or the event-dispatch-handle loop of

MAY/ZJUNE 1999

1094-7167/99/$10.00 © 1999 IEEE

37

graphical user interfaces. These examples
common features have been abstracted in the
controller object-oriented design pattern.® The
controller design pattern does not have an
explicit feedback mechanism, soit represents
only the simplest form of control model—
namely, the open-loop model, which we'll
describe in the next section. The control-the-
ory paradigm goes beyond open-loop systems,
it includes, for example, the read-match-fire
loop of rule-based systems and the sense-
response-act loop of intelligent agent systems.

Significant advances can be achieved by
mapping the concepts of control theory to
software engineering and then transferring
the concepts and tools devel oped in control
theory—for example, controllability, stabil-
ity, and sensitivity analysis. Toward that end,
we propose a hew paradigm for software
development that explicitly and systemati-
cally addresses self-control of software. This
paradigm

* regardsthe software system asa plant to
be controlled;

* models the behavior of the plant and the
environment as a dynamic system;

 identifies measurable inputs to the plant
and classifies them as control inputs,
which control the plant’sbehavior, or dis-
turbances, which alter the plant’s behav-

ior unpredictably;

e includes a controller subsystem for
changing the values of the control inputs
to the plant; and

e adds, if necessary, a quality of service
(Q0S) subsystem for computing feed-
back. The controller usesthisfeedback to
control the plant.

This paradigm can exploit the considerable
research and industrial experiencein control
theory. Also, with this paradigm we can sys-
tematically derive models for self-control-
ling software.

Control theory-based
software models

A self-controlling software system distin-
guishes two primary entities: the computer
system and its environment, also called the
world. Typically, theworldisadynamic sys-
tem whose behavior isafunction of itspre-
vious state, actions exerted onit by the com-
puter system, and time. We presumethat the
computer system attemptsto satisfy an exter-
nally defined goal through the appropriate
selection of actions. Actions are generated
based on various sensory inputs, the goal,
and the computer system’sinterna state. Fig-

ure lillustrates a basic software system.

We now introduce a series of progressively
more complex control problemsand describe
the control models that the control commu-
nity has devel oped to addressthese problems.
These models add redundancy to the basic
function (plant) of asoftware systemto intro-
duce various levels of self-controllability to
the overall system.

An image-recognition example. Through-
out the article, we'll use a hypothetical
image-recognition system*°toiillustrate our
ideas. The system’s basic function (the part
that does not involve any control) is simply
to recognize certain features of input images.
For simplicity, assumethat only two classes
of inputsare possible: square and nonsquare.
The program’s goal is then to classify input
images into these two classes.

Environment

Action J Input

Goal —— Computer

system

Figure 1. The basic system model.

P /| Environment Environment _ Environment
r' (€] © (€] o
|
__|Controller | @ _|pjpy | O Gogl Controller| @ [Plant | 9 oAl | controller | @ | plant | & QoS | QoS
a=1(O) r'/ = \\ Vi i
! | \ !
\) N)
€Y (b) (©
_ Environment _ Environment
(C] 1) (C] o
Goal | controller| @ | Plant | & QoS | QoS Coal | controller| @ | plant | & QoS | QoS
3 N
i i
K | K |
| |
Controller | .| Model Controller | .| Model
E designer estimatory=——— J/J selector | selector [=——— — }
| ? ? |
Controller Model 1
database database !
‘ J
N)
(d) (e)

Figure 2. Control models: (a) open-loop; (b) closed-loap (feedback); (c) closed-loop with a quality-of-service subsystem; (d) indirect-adaptive; () reconfigurable.

38

IEEE INTELLIGENT SYSTEMS

Suppose that the program consists of two
components: edge identification and object
classification. Let’sfocus on object classifi-
cation. Assume this component is imple-
mented asastatistical classifier that teststhe
hypothesis that the image is a square based
on a confidence coefficient a. It outputs its
classification decision 4. The inputs to this
component are edges represented as classes
O, of gradient valuesfor each edge point. The
means ©; and variances s for these classes
are also computed by the plant and used in
its hypothesis testing. The edge-detection
component detects the edge points and cal-
culatesthe classes ©;. When no controller is
involved, thevalueof aissdected at thetime
of system design and remainsfixed through-
out the classifier'slife.

Open-loop control. Thismodel selectsthe
control-input value according to a control
law that calculates the control input based
on the values of other inputs. The control
law ispart of the controller. Unlikethe basic
system (see Figure 1), the open-loop con-
trol model splitsthe systeminto aplant and
controller.

In the image-recognition example, this
model could involve the calculation of the
confidence coefficient a asafunction of the
inputs, a = f(©). Specificaly, this function
could be defined such that for inputs with
higher variances, the confidence coefficient
a would have alower value.

Figure 2a shows the information flow in
this example. In this and later figures, the
annotations on the arrowsillustrate how the
model would be used for theimage-recogni-
tion example. Arrows with no source are
inputs from the environment; arrowswith no
target are outputs to the environment.

Closed-loop (feedback) control. Thismodel
explicitly and immediately feeds back the
plant’soutput to the controller (see Figure 2b).
Although control theory assumes that the
plant directly provides feedback, we can’t
assumethisfor software systems. So usudly,
a QoS subsystem must be introduced. In
some cases, it computesthe feedback’svalue
as afunction of input and output variables.
In other cases, it might take an external input
(for example, from the user) and then com-
pute the feedback’s value based on al avail-
able information. The controller uses the
feedback produced by the QoS subsystemto
compute control inputs. Figure 2c showsthe
feedback model with a QoS subsystem.

This control model is more precisely
expressed as a feedback loop. In each loop
iteration, the plant receives input from the
environment, makes adecision based on the
input, and acts by affecting the environment
and then producing output signals. It sends
these signalsto the QoS subsystem and then
to the controller. To make the decision, the
plant usesinput from the controller and inter-
nal state information as well as the sensor
input. The controller receives plant output
through the feedback loop. It also knowsthe
control goal. It then evaluates whether the
goal is satisfactorily being achieved. If not,
the controller changes its input to the plant
to achievethe control godl. (In softwareengi-
neering, this model is often classified as an
adaptive software model, but it would not be
classified as adaptive in control theory.)

In our image-classification example (see
Figure 2c), the feedback isthe probability of
correct recognition, PCR(t), for each input
frame t. This probability is updated by the
following eguation, which ispart of the QoS
subsystem:

PCR() = PCR(t —l)t[ﬂt ~)+5

where PCR(0) =1 and & is the external
feedback input (in our example, the correct
classification decision). The goa is to
achieve the highest probability of correct
recognition—that is, PCR(t) = 1. The con-
trol input a is computed by

a(t) = K PCR(t - 1) - PCR(t)) + a(t - 1).

Adaptive control. Many of today’s control
problems make high demands on the con-
troller. These problems inherently involve
large-range dynamic disturbances of al kinds
and stringent time requirements. Also, the
disturbances occur and change unpredict-
ably, causing an unpredictable response
because of the plant’s nonlinear characteris-
tics. Changing the goal can add yet another
range of disturbances.

To solvethis problem, Karl Astrom intro-
duced adaptive control 8 which can deal with
the uncertainty in the model parameters of
the controlled plant. The exact values of these
parameters and of the controller do not need
to be known when an adaptive controller is
designed.

Therearetwo general approachesto adap-
tive control. Direct adaptive control para-
meterizesthe plant model in terms of the con-

troller parameters. It then estimates the con-
troller parametersdirectly. Indirect adaptive
control estimates plant parameters onlineand
uses them to calculate the controller para-
meters. This approach addstwo subsystems:
themodel estimator and controller designer.
It adjuststhe controller parameters based on
the plant’s model that is being updated dur-
ing execution. Figure 2d showsthe software
model for indirect adaptive control.

For our image-classification example, the
plant isa statistical classifier, so the plant’s
model is probabilistic and is represented by
anormal distribution N(D;; w4, 6;), where D;
is the angle between two consecutive edges
©and O -y,

0=8,-0.

The model estimator updatesthe model (the
estimates for y; and ;) incrementally after
receiving input from the plant (the mean edge
gradient®, and variance s?) according to this
rule:

e /i =
Vo ng

where n; is the number of edge classes for
image t. The model estimator averages the
updated estimatesfor g; over al pairsof con-
secutive edges and passes the estimates g to
the controller designer. The controller de-
signer updates the gain K of the control law
accordingtoK = C [, whereg=s?and Cis
afixed constant.

Reconfigurable control. Adaptive control,
although more flexible than conventional
feedback control, hasitsown limitations. The
most obvious limitation is that the logic for
both theidentification and decision functions
isimplemented at thetime of controller design
and remains fixed for its lifetime. Thus, the
adaptive controller has a limited ability to
update the control law: it can only update the
control-law parameters within a predefined
class of models (the parametric uncertainties
of the modédl). It cannot, however, deal with
al kinds of nonparametric uncertainties,
including high-frequency unmodeled dynam-
ics, low-frequency unmodeled dynamics, and
sensor noise. Sometimes when the plant has
acharacteristic even dightly different thanthat
presumed in the adaptive-controller design,
the results can be catastrophic. As Charles
Rohrs and his colleagues showed, when a
plant’s dynamics are not modeled correctly,
even small uncertainties can lead to severe
parameter drifting and plant instability.” Much

MAY/ZJUNE 1999

39

Feedback loop
_ Environment
(S} o
Controller Plant QoS
o
Goal Adaptation
loop
Controller Evaluator
designer
[} Reconfiguration
3 g loop
*~———————————-"AReconfigurer f---------—--—-- .
Information transfer ———=—
i Reconfiguration ~ ______ -
Specification Component
database database

Figure 3. The self-controlling software model combines and generalizes the features of the control models shown in

Figure 2.

research has been performed to address the
basic problemsthat Rohrs and his colleagues
pointed out.

Moreover, even if an adaptive controller
can adapt to new situations, anonlinear char-
acteristic of the controlled plant might peri-
odically resurface. Adapting to thisrecurring
situation every time seems unreasonable. A
much more economical approach would
probably beto learn acontrol law associated
withaparticular dynamic characteristic type,
store it in the controller’s database, and use
it whenever the recurrence of aknown situ-
ation is recognized. This requires an intelli-
gent controller with both adaptive and learn-
ing capabilitiesthat not only can adapt to and
memorize the new control law, but also can
select an appropriate control |aw.

Improving upon adaptive control. Reconfig-
urable control® is arelatively new model in
the design and implementation of control sys-
tems. Thedriving force behind thisapproach’'s
development was the need to control plants
that unpredictably change their dynamics
structurally. Thismeansthat at different points
in time, the plant’s dynamic model must be
described by equations having different vari-
ables and different mathematical operators.
Themainideaisto be ableto monitor the sit-
uation, recognize structural changes, and then
redesign the controller in real time to com-
pensate for the structural changes.

Figure 2e shows the software model
based on a reconfigurable controller. This
model contains two new subsystems—the
model selector and controller selector—and
databases—the model database and con-
troller database. The model selector incor-
porates all the features of the model esti-

mator in the adaptive control model. Addi-
tionally, when it detects significant changes
inthemodel, it can select adifferent model
from its model database. This triggers the
selection of anew controller from the con-
troller database.

Reconfigurable control is applicable in
many situations, such asdamageto the plant.
Damage need not result in a catastrophe. In
many cases, radically changing the control
strategy can compensate for damage. Thisis
possible when redundancy existsin the con-
trolled system. For instance, imagine atwo-
legged robot, whoseright leg has been dam-
aged, using theleft leg for moving (jumping),
like humans or animals would naturally do.

Referring to our image-recognition exam-
ple, the model selector might decide that the
normd distribution modd isinappropriatefor
agiven sequence of input images. Itsdatabase
might have other probabilistic models, repre-
sented, for example, by the Poisson distribu-
tion, Weibull distribution, or gammadistribu-
tion. Selecting one of these models requires
selecting a new controller and the controller
designer’srulesfor updating control laws.

Reconfiguring the plant. Incontrol, theplantis
aphysica object whosebasic structureremains
fixed over the control system's lifetime.
Changing a plant would require redesigning
its mechanical and electrical parts, manufac-
turing, installation, and so on. However, we're
dedling with plantsthat are software systems.
Because of software’s great flexibility, we
should be able to more easily reconfigure a
plant. In this process, we are guided by such
congraintsasinputsfrom the environment and
control goals. Wearefreeto changethe plant’s
agorithms for as long as this guarantees the

achievement of the control goals.

For our image-recognition example, con-
Sider the edge-detection component. The per-
formance of edge-detection dgorithmsdepends
on various characteristics of theinput images.
For instance, we can have two agorithms for
edge detection: a Sobel edge detector and a
Laplacian edge detector. The former works
better with horizontal and vertical edges, while
thelatter isbetter for finding edgesthat are not
perpendicular to the axis and that are not
straight lines. A software system based on the
reconfigurable-control model will select an
edge detector appropriate to the specific type
of input.

The self-controlling software
model

Our self-controlling software model (see
Figure 3) combines and generalizesthe fea-
tures of the control modelswejust described.
This model’s structure is basically three
loops, each of which represents a different
timescale for control activity:

* In the feedback loop, the controller sets
parametersfor the plant based on the goal
and feedback received from the QoS sub-
system.

* Intheadaptation loop, the evaluator eval-
uates the behavior and performance to
determine whether the plant’s model is
appropriate. It then adapts the model, if
necessary, whichinturntriggersachange
in the control law.

« Thereconfigurationloop isadrastic and
relatively costly action that the reconfig-
urer performs at the evaluator’s request.
The reconfiguration can involve struc-
tural changes in the plant model, QoS
subsystem, evaluator, controller, con-
troller designer, goal, or even plant. The
reconfigurer itself remainsfixed. During
decision making, the reconfigurer uses
the specification database, which con-
tains a high-level system requirement,
including a high-level goal. During re-
configuration planning, it uses the com-
ponent database to assembl e various sys-
tem elements.

Webedlievethismodel canlead to software
systems with an impressive capability for
responding, adapting, and reconfiguring. Of
course, salf-controllability does not comefor
free. As we mentioned before, the applica-

40

IEEE INTELLIGENT SYSTEMS

tion's functionality must be supplemented
with some redundancy to implement the
mechanisms of self-adaptability: evaluation,
model estimation, adaptation, and reconfigu-
ration. However, we can reducethisoverhead
and improve overal system performance by

» evauating the behavior based on a sam-
ple of feedback iterations rather than on
every iteration;

* generating more efficient interfaces be-
tween components at runtime; and

 constructing more efficient component
organizations, scheduling algorithms, and
evaluation algorithms at runtime.

In the following subsections, we give a
more detailed definition of the self-control-

ling softwaremodel by discussing the respon-
sibilities of the various subsystems and the
approach we havetakento redlizing these sub-
systemsin our research prototype systems.

Thefeedback loop. Thisloop consists of the
controller, the plant, and the QoS module.
The controller must adjust the plant’s para-
meters to maintain the quality of service. In
adjusting these parameters, the controller
must obey various constraints. The most
important constraints from the control the-
ory point of view are the controllability and
stability constraints. The controller must be
designed such that the whole system is sta-
ble; that is, small changesin the control input
do not cause large changes in the system’s
behavior. The system must also be control-

lable; that is, the controller should be ableto
drivethe systemto achieveitsgoal. To design
a controllable and stable system, the con-
troller’s designer must know the plant’s
dynamic characteristics. (For other con-
straints, seethe sidebar.)

The plant’s dynamic characteristics de-
pend on the softwareit executes and the hard-
ware on which it executes. But the plant’s
main role is to perform some computation
for the environment. Our approach treatsthe
environment asan external system, itsimpact
on the plant as disturbances, and its impact
on the model as perturbations. The method
we useto model the environment dependson
its type. For instance, if the environment is
constant or steady-state, themodeling jobis
much simpler than when the environment has

MAY/ZJUNE 1999

41

asignificant dynamic component.

In some situations, we might not need to
model the environment (the disturbances).
Nevertheless, we still need agood model of
the plant’s dynamics. In principal, we can
derive such amodel from models of the soft-
ware and hardware, such as state-chart mod-
els, Petri net models, or logical models
expressed in atemporal logic. In this case,
the main problem becomes optimization—
that is, optimizing the plant’s performance
with respect to the performance-evaluation
measure devel oped by the evaluator.

When the environment is dynamic, we
need to know its model to design the con-
troller. Environments are either continuous
or discrete. For continuous environments, the
models are given by differential equations;
for discrete environments, they are given by
difference equations. Controllerscan beclas-
sified dong the samelines. When acontroller
isimplemented in software, it will not nec-
essarily be continuous, and might be either
discrete or hybrid. In hybrid control, both the

plant and the controller have continuousand
discrete dynamics and variables.®

Dynamic environments are the center of
attention of thewhol e control research com-
munity. We believe that when dealing with
thiskind of environment, the software engi-
neer developing a self-controlling software
system should seek a control engineer’'s
expertise, to exploit hisor her knowledge of
controller design.

Evaluation of the plant’sbehavior and per-
formanceisbased on quality of service.° The
QoS module computes ameasure of behavior
and performancethat takesthe form of amul-
tidimensional function similar to the benefit
function.1® The difference is that the benefit
function measuresthe benefitsreceived by an
end user, whilethe QoS module measureshow
well theplant and its componentsperformrel -
ative to the system’s specified mission. The
evauator measuresthe system'’s performance
using either a quantitative measure of how
well the system performed or aprobability of
correct operation for specific missions.

The adaptation loop. This loop adds two
componentsto the feedback loop: the evalua-
tor and the controller designer. If the self-con-
trolling software includes only the feedback
loop, the plant’s model is not represented
explicitly in the system; the human designer
uses it to derive a control law (to design the
controller). When the adaptation loopisimple-
mented, the evaluator knows that moddl. The
evaluator generalizesthe concept of themodel
estimator in Figure 2d and model sdlector in
Figure2e. Inthe adaptation loop, theeva uator
assesses whether the plant’s behavior is com-
patible with the plant’s model and compen-
satesthemodel’s parametersaccordingly. The
controller designer usesthese model parame-
tersto updatethe control law. It then passesthe
updated control law to the controller, which
uses the control law to compute new conrol
inputsto the plant.

Similarly to the feedback loop, self-con-
trolling software that implements the adap-
tation loop must satisfy the additional con-
straintsfor an adaptive controller. Again, the

T CONNECTED

(L0 Computing

Object-
orientin

.—-—-...‘.

the

http://computer.org/internet/

lEEE

COMPUTER
SOCIETY

... with content for CS professionals:

O Peer-reviewed articles and tutorials report the latest developments in
Internet-based applications and enabling technologies.

0 Companion webzine, IC Onling, offers unique content and links to
other useful sites at http://computer.org/internet/.

To subscribe:

O Send check, money order, or credit card number to

IEEE Computer Society, 10662 Los Vaqueritos, CA 90720-1314.
O $32 paper/$26 electronic/$42 combo format to

members of the IEEE Computer or Communications Societies.

Internet Computing

most important constraints are controllabil-
ity and stability.

Thereconfiguration loop. Thisloop extends
the adaptive model by adding three compo-
nents: the reconfigurer, the specification date-
base, and the component database. Addition-
aly, the evaluator’s role is extended by
including the ability to evaluate the whole
system’s performance relative to the envi-
ronment’s variability. The component and
specification databases store replacement
components (and their specifications) that can
be reconfigured: plants, QoS modules, con-
trollers, controller designers, and evaluators.

A self-controlling system’s ability to adapt
to the environment’svariability can be mea-
sured with the Total Requirements \olatility
measure.!! Strictly speaking, the TRV mea-
sures the volatility of requirements, not that
of the environment. However, these two are
closely related. Functional requirements can
be expressed in many ways, but one of the
most common is through preconditions and

postconditions. Preconditions on the input
parameters of afunction represent the ranges
or other constraints on input parametersthat
arerequired for thefunction to perform ade-
quately. The environment’svolatility isman-
ifested in input values that do not satisfy the
preconditions. To handle such input values,
we must modify the preconditions—that is,
modify the requirements. Such modifications
are precisely what the TRV measures.

We considered using function points
instead of the TRV for measuring require-
mentsvolatility. Although function pointsare
more popular among software engineers,
they are not appropriate for this problem.
Unlikethe TRV measure, the propertiesthat
define the function-point measure do not
reflect changesin the environment.

Reconfiguration can be accomplished by
component selection, transformation, and
composition. In the first and simplest case,
when the component does not perform
according to the criteriaset forth by the eval-
uator, the reconfigurer searches the compo-

nent database for areplacement. Toward this
godl, it first matchestheinterfaces of the com-
ponents. If it finds amatching component, it
checks the component’s specification. We
intend to use formal specificationsfor defin-
ing the purposes and interfaces of compo-
nents. An algebraic specification of a com-
ponent contains sorts, operations, and axioms.
Collectively they define the component’s
function. To compose various component
specifications, we must al so specify theinter-
faces among the components (when the com-
ponents are independent processes). A com-
ponent can replace another component if its
specification satisfies that of the component
being replaced. Thisrelatively simple opera-
tion might not be successful for agiven spec-
ification database. Component transforma-
tion and composition can then beinvoked to
achievethe goal.

Researchers are investigating various ap-
proaches to transformations and composition
for software architecture.’ For instance, SRI
is developing a provably correct approach to

|EEE

MuliMedia

1999 Editorial Calendar

January-March
April-June
July-September

October-December

Understanding Multimedia

Media Spaces

Multimedia Mix: MPEG-7,
teleconferencing, and)
retrieving visual information

Satellite Systems for Mobile
Multimedia Services

http://computer.org/multimedia

Issues in the use of control theory for
software engineering

Thefollowing issues, which have been investigated in control theory,

are relevant to software engineering:

Controllability: Thisisthe ability to steer the system (plant) in
desired directions. This concept iswell-defined in control theory. A
plant must be proved controllable to ensure that it will perform
according to the specifications when inputs to the plant change in
unexpected (but bounded) ways. Control theory offers good tools
for analyzing the controllability of linear systems. Toolsfor analyz-
ing the controllability of software in a more general sense need to
be investigated.

Observability: Thisisthe ability to determine asystem'’s (initial)
state from measurements of the system. To control the system’s
state, we must be able to determine its current state.

Sability: Basically, thisis the system property that ensures that
small changes (disturbances) in aninitial state (also called an equi-
librium state or invariant set) eventually have negligible effects on
the system’s behavior. It might mean, for instance, that the system
does not exhibit oscillations as aresult of small input. Control the-
ory provides many (two dozen or so) definitions of stability.! Ana-
lyzing these definitions and ng their appropriateness are
important for the analysis of software stability.

Robustness: This property isthe controller’s ability to achieveits
objectives even if large, unanticipated variations occur in the plant.
In other words, as the environment departs from the domain for
which the system was designed, the system degrades gradually in
performance rather than exhibiting a catastrophic failure.
Autonomy: Because a self-controlling system performs reconfigura-
tion without direct supervision, it exhibitsagreat deal of autonomy.

cover, even its general -purpose reasoning mechanismswill fail. So,
to be able to adjust to new situations, a self-controlling system
should be able to incorporate new knowledge. The self-controlling
software model is amenable to any number of control strategies,
such as expert control, neural and fuzzy control, hybrid control, and
learning control. All these methods (used in intelligent control) deal
with both autonomy and generality.

Chattering: If the environment reaches a state that is on the bound-
ary between two control regimes, the system might chatter—that is,
reconfigure repeatedly between two or more configurations. Be-
cause reconfiguration incurs an overhead, chattering can degrade
overall system performance.

In addition to the control-theory issues, research on the self-control-

ling software model must address these software-system issues:

Scheduling: Component scheduling isimportant for any system
model. It is especially important for a system using the self-control-
ling software model because activities take place on multiple loops
implemented on different time scales.

Proactive reconfiguration: Reconfiguration is normally reactive;
that is, it'striggered by an evaluation indicating that the systemis
not accomplishing its mission. The software model should also pro-
vide for proactive reconfiguration—a specul ative reconfiguration
that occurs because the system has determined that another config-
uration will likely perform better.

Efficiency: The model should minimize the cost of the redundancy
necessary for self-adaptability. For instance, in optimal control, the
controller’s goal isto minimize a cost function.

Autonomy isintelligent control’sfocus.

e Generality: A system’'s generality islimited by its knowledge base. 1.
When it encounters a situation that the knowledge base does not

Reference

K. Passino and K. Burgess, Stability Analysis of Discrete Event
Systems, John Wiley & Sons, New York, 1998.

the hierarchicd refinement of software archi-
tectures. Thisapproach first specifiesan archi-
tecturein SADL, an architecture specification
language, and then uses several provably cor-
rect transformationsto progressively refinethe
architecture. Logical theoriesrepresent speci-
fications. Refinement isguided by patternsand
styles, which are structure-preserving map-
pingson theories. To address component com-
position, this approach uses dynamic archi-
tectures, which reconfigure the software
architecture while the program is running.3
The SRI gpproach addresses such problemsas
how to select components, connectors, and
topologies (interface matching) and how to
decidewhether aparticular architectural solu-
tion satisfies given architectural constraints.
Our self-controlling software model adds
to thistransformation model these elements:

e architectural components, such as the
plant and controller, that are well-defined
in control theory;

e anarchitecturethat hasevolved asaresult
of many years of research by the control
community; and

* aset of control-theoretic constraints, such
as controllability and stability, which
have been proven useful and adequate.

OFTWARE SY STEMS REPRESENT
some of the most complex artifacts ever cre-
ated. Yet, as software’s name suggests, it is
not embodied inimmediately tangible phys-
ical structuresbut in the electronic memories
of computers. In contrast, theterm hardware
generically refers to the tangible physical
artifacts associated with complex artifacts.
In theory, software should be more flexible
than hardware because it can be manipul ated
at electronic speeds without altering physi-
cal structures. Yet reconfiguring software to
achieveits purpose better is often much more
difficult than reconfiguring hardware. Even

upgrading a software component from one
version to the next one can be very difficult
and has caused major system failures. Peter
Neumann’'s ACM Risks Forum mentions
several examples of these.4

Recent research in dynamic architectures
has addressed the problem of automatic
reconfiguration of software at runtime. But
this recent research has not addressed the
problemsthat occur when the environment is
dynamic and the reconfigured algorithms pro-
duce unexpected consequences. For instance,
the system might not properly steer toward
thedesired goa (the controllability problem),
and uncontrolled oscillations might occur in
response to small changes in the input (sta-
bility problems).

Control engineershavelong observed these
kinds of problems, and control theory has
developed a host of concepts, architectures,
and techniques to deal with these problems.
Thesetechniquesincludefunctional elements
such asthe controller, themode estimator, and
thecontrol designer. Inaddition, many classes
of plantshave been analyzed, and architectures
for organizing the functional elements have

44

IEEE INTELLIGENT SYSTEMS

evolved. Control engineers have identified
important propertiesthat self-controlling sys-
temsshould satisfy, such ascontrollability, sta
bility, observahility, and robustness. Mathe-
matical techniquesand heuristicsfor designing
and analyzing control systems have been
developed.

Software systemsareincreasingly impor-
tant components of the world’s social and
economic infrastructure. The expectations
for availability, performance, and reliability
are continually rising, which has led to the
need for self-controlling systems capable of
online reconfiguration. Such systems have
already been devel oped in research labs and
will soon be applied in industrial and com-
mercial settings. Although mapping control
theory concepts to software engineering is
not easy, we believe that these concepts can
make an important contribution to the devel -
opment of these and other large, complex
software systems. An architecture such as
we've described in this article will expedite
this mapping, letting software engineers
exploit the vast amounts of knowledge and
experience accumulated in control theory.

References

1. M.D. Mesarovic and Y. Takahara, Abstract
Systems Theory, Springer-Verlag, Berlin,
1989.

2. M. Shaw and D. Garlan, Software Architec-
ture: Perspectives on an Emerging Discipline,
Prentice Hall, Upper Saddle River, N.J.,
1996.

3. C.Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysisand
Design, Prentice-Hall, 1998.

4. Y.A. Eracar and M.M. Kokar, “An Architec-
turefor Software That Adaptsto Changesin
Requirements,” to be publishedin J. Systems
and Software, 1999.

5. Y.A. Eracar, RAACR: A Reconfigurable
Architecture for Adapting to Changesin the
Requirements, master’s thesis, Northeastern
Univ., Boston, Mass., 1996.

6. K.J. Astrom, Adaptive Control, Addison-
Wesley, Reading, Mass., 1989.

7. C.E.Rohrsetal., “Robustness of Continuous-
Time Adaptive Control Algorithms in the
Presence of Unmodelled Dynamics,” |EEE
Trans. Automatic Control, Vol. 30, 1985, pp.
881-889.

8. JS. Shamma, “Linearization and Gain-
Scheduling,” The Control Handbook, CRC
Press, Boca Raton, Fla., 1996.

9. M.S. Branicky, B.S. Borkar, and S. Mitter, “A
Unified Framework for Hybrid Control:
Model and Optimal Control Theory,” |EEE
Trans. Automatic Control, Vol. 43, No. 1, Jan.
1998, pp. 31-45.

10. S Chatterjecetal., Modeling Applicationsfor
Adaptive QoS-Based Resource Management,
tech. report, SRI Int'l, Menlo Park, Calif.,
1997.

11. R.J. Costello and D.-B. Liu, “Metrics for
Requirements Engineering,” J. Systems and
Software, Vol. 29, No. 1, Apr. 1995, pp. 39—
63.

12. M. Moriconi, X. Qian, and R.A. Riemen-
shneider, “ Correct Architecture Refinement,”
|EEE Trans. Software Eng., Vol. 21, No. 4,
Apr. 1995, pp. 356-372.

13. D.C. Luckhamand J. Vera, “An Event-Based
Architecture Definition Language,” |EEE
Trans. Software Eng., Vol. 21, No. 9, Sept.
1995, pp. 717-734.

14. P. Neumann, “System Development Woes,”
Comm. ACM, Vol. 40, No. 12, Dec. 1997,
p. 160.

Mieczyslaw M. Kokar is an associate professor
of electrical and computer engineering at North-
eastern University. His research interests include
formal methods in software engineering, intelli-
gent control, and information fusion. He has an
MS and a PhD in computer systems engineering
from the Technical University of Wroclaw, Poland.
He is a member of the |EEE and ACM. Contact
him at the Dept. of ECE, Northeastern Univ., 360
Huntington Ave., Boston, MA 02115; kokar@
coe.neu.edu; www.coe.neu.edu/~kokar.

Kenneth Baclawski is an associate professor of
computer science at Northeastern University. His
research interestsinclude formal methodsin soft-
wareengineering, information retrieval, and data-
base management systems. He hasaBS from the
University of Wisconsin and a PhD from Harvard
University. Heisamember of the|EEE and ACM.
Contact him at the College of Computer Science,
Northeastern Univ., 360 Huntington Ave., Boston,
MA 02115; kenb@ccs.neu.edu; www.ccs.neu.edu/
home/kenb.

Yonet A. Eracar isaPhD candidate in the Col-
lege of Engineering at Northeastern University and
is a software engineer at Teradyne Inc. Hisinter-

-) -
How 1o Raaeh Us
Writers

For detailed information on submitting articles,
write for our Editorial Guidelines (m.davis@
computer.org), or access http://computer.org/
intelligent/edguide.htm.

Letters to the Editor
Send letters to
Managing Editor
|EEE Intelligent Systems
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
dprice@computer.org

Please provide an e-mail address or
daytime phone number with your letter.

On the Web
Access http://computer.org/intelligent/ for
information about IEEE Intelligent Systems.

Subscription Change of Address
Send change-of-address requests for maga-
zine subscriptions to address.change@ieee.
org. Be sure to specify Intelligent Systems.

Membership Change of Address
Send change-of-address requests for the
membership directory to directory.updates@
computer.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact membership@
computer.org.

Reprints of Articles
For price information or to order reprints,
send e-mail to m.davis@computer.org or fax
(714) 821-4010.

Reprint Permission
To obtain permission to reprint an article, con-
tact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

SYSTEMS

& their applications

estsinclude software architectures, object-oriented
design and modeling, compiler design, and code
generators. He hasaBSin electrical engineering
and in physicsfrom Bogazici University, Istanbul,
and an MS in computer systems engineering and
in engineering management from Northeastern
University. Contact him at the Dept. of MIME,
Northeastern Univ., 360 Huntington Ave., Boston,
MA 02115; yeracar@coe.neu.edu; www.coe.neu.
edu/~yeracar.

MAY/ZJUNE 1999

45

