
The NU& Object-Oriented Semantic Data Modeling Tool:

Preliminary Report

Kenneth Baclawski

Timothy Mark

Robert Newby

Ramanathan Ramachandran

College of Computer Science

Northeastern University

Boston, Massachusetts 02115

Technical Report NU-CCS-90-17

Abstract

The nu& system is a semantic object-oriented data modeling tool. It is a research vehicle for

studying ways to enhance the modeling power of a transaction management system while maintain-

ing its high-performance characteristics. This is the �rst of a series of reports on the nu& system.

c 1989 by the authors and Northeastern University.

Version 1.3 September, 1989

The authors were supported by NSF Grant # CCR-8716485

Baclawski, Mark, Newby and Ramachandran page 2

1. Introduction

The nu& system is a semantic object-oriented data modeling tool. It is intended to

be a vehicle for both research and education on such tools, and for this reason is a public

domain software system. It is concerned with studying ways to enhance the modeling power

of a transaction management system while maintaining its high-performance characteristics.

The name is a reference to Northeastern University where most of the work is being carried

out.

This is the �rst report on the nu& system. As such, it represents the status of the

project during the preliminary design phase.

2. Background on Database Management and Object-Oriented Systems

Database management is concerned with the management of large amounts of reliable,

shared data. The speci�city of this objective contrasts with the situation in programming

languages where there are many competing concerns, and progress is more di�cult to ascer-

tain since there is no goal to be achieved.

Object-oriented programming is a programming paradigm which is popular especially

among those who engineer data-intensive systems. In recent years, these areas needed to

handle large amounts of persistent and shared data (something which used to occur only

for business-oriented applications) and this need, together with the changes in the cost ratio

between core memory and hard-disk memory provided the impetus for the development of

object-oriented database systems.

The main characteristics of an object-oriented system, as identi�ed in [Bancilhon 88],

[Banerjee et al. 87], are:

1. Objects are encapsulated. This means that the operations performable on an object are

handled along with the data structure, that the designer of the structure can control the

contexts within which the data structure is used, and that the external user of the object

is insulated from the internal implementation details of the structure. The term data

hiding is used when the internal details of a data structure are hidden from a user.

2. Objects exist independently of their value; new attributes and values can be attached or

removed from objects without a�ecting their existence. This feature of an object-oriented

system is known as object identity.

3. The existence of a system of types and classes. While types are used for grouping together

objects that have the same characteristics (as far as data structures and operational

methods are concerned), classes are designed to assist the user at run-time by providing

mechanisms for creating and storing objects.

4. Objects of di�erent structures may share attributes and methods by inheriting some of

their properties from more general objects to which they belong.

5. Methods, to be applied to objects, can be de�ned early before their actual content is

de�ned. The actual method to be applied to an object is determined at run-time through

a mechanism called late binding. This approach simpli�es programming activity by al-

lowing the programmer to use diverse objects in a uniform manner. For example, a print

The NU& System: Preliminary Report page 3

statement that prints a single object would display the object in a manner that is appro-

priate for the object. A non-object-oriented language would require a much more complex

construction to accomplish the same result, if it could be done at all.

Engineering design or CAD database systems present a di�cult challenge to tradition-

al database management tools. The most obvious problem is that CAD databases require

geometric structures to be represented and manipulated. This problem has been consid-

ered extensively in the research literature, and has spurred an interest in database systems

that support complex objects. Object-oriented databases are a natural setting for complex

objects.

However, there are challenges that are less obvious but no less important. One of

these concerns consistency constraints. In traditional databases, consistency constraints are

relatively simple and entirely static. By contrast, in an engineering design database the con-

straints are complex and are also enforced or \triggered" dynamically. Large designs require

a long time to create, and early versions can be incomplete and only partially consistent.

What is needed is a language for dynamic consistency constraints that allows consistency

constraints to be gradually enforced as the design is being built. This is similar to syntax-

sensitive editors that perform syntax checking and even compilation of software as it is being

written.

Yet another issue concerns concurrent access to engineering designs as they are being

produced. For example, if an editing session is regarded as a transaction, then a system

failure would result in the entire session being undone. Furthermore, other transactions that

require use of the design would have no way of distinguishing whether the design is being

used for a long or a short time. In fact, the same problems occur in any editing system.

Transaction concurrency control is inherently short-term and volatile. A new kind of lock

is needed, one that is persistent, long-term and clearly distinguishable from the ordinary

concurrency control mechanism.

Computer-Integrated Manufacturing presents many of the same problems as Engineer-

ing Design, but there are still other problems. These systems are updated frequently and

demand real-time performance. Furthermore, a CIM system is intrinsically distributed and

heterogeneous. This puts a greater burden on the database system to enforce integrity

constraints and concurrency control and to provide recovery from failures.

Ever since the �rst programming language, FORTRAN, was developed, programming

languages have been driven by the need for higher-level semantics while at the same time

retaining the e�ciency of lower-level structures. The current work in object-oriented pro-

gramming languages can be seen as part of this historical trend. Data models have followed

a similar evolution. Early data models o�ered little very little support for higher-level se-

mantics as well as little independence from the underlying �le structures. The relational

model, as embodied in the ANSI standard for the SQL language, o�ers both increased data

independence and cleaner (if not higher-level) semantics.

While both programming languages and data models have been evolving toward imple-

mentation independence and higher-level semantics, they have been doing so independently.

For example, programming languages have type systems that are very di�erent from those

in data models. As a result it is very di�cult to integrate a programming language with a

Baclawski, Mark, Newby and Ramachandran page 4

data language. This problem has been called the \impedance mismatch" between the two

kinds of language [Bancilhon 88]. The impedance mismatch between the relational model

and object-oriented programming languages is especially troublesome, since the relational

model is a structural rather than an object-oriented model.

3. Objectives of the NU& System.

Given the very di�erent nature of database management and programming languages, it

is no surprise that the database management community has evolved a very di�erent culture

than the programming language community. Yet the two are fundamentally related, and

practitioners in both �elds have frequently expressed the need for more compatibility. In

the 60's this feeling led to the development of the CODASYL data model which is closely

tied with the COBOL programming language. Subsequently, the two communities diverged,

and recently the need for compatibility has again been expressed, under the catchy slogan

\reduction of the impedance mismatch." Plus �ca change, plus la m�em�e chose.

While developing a data modeling tool with many new \bells and whistles" is seductive,

and everyone seems to be doing it, the reduction of the impedance mismatch would have

a much greater impact in the long run. For this reason, we chose to make this our most

important objective. This means that even if a feature is desirable, it might not be included

if it detracts from the impedance mismatch.

The following are some of the other research problems being studied:

1. Integrating complex objects, views, early and late binding with the is-a and instance-of

relationships among objects and types.

2. Integrating attribute and behavioral inheritance.

3. Studying views, database restructuring and schema integration in the object-oriented

paradigm.

4. Developing a model in which types, methods, transactions and constraints are all objects,

allowing a more uniform treatment of data and metadata.

5. Introducing more exible approaches to concurrency control in which long-duration ses-

sions having user interaction behave like transactions.

6. Implementation issues in distributed, high-performance object-oriented database systems.

We plan to make use of an earlier system, the Network Emulation Tool [Baclawski 87],

that has seen extensive, successful use in courses at Northeastern University and elsewhere.

This system has been reprogrammed in the object-oriented programming paradigm using

C++ [Baclawski, Mark, Ramachandran 89].

Although there are commercial object-oriented database systems now on the market

and there are many research prototypes, there is considerable disagreement about how such

a system should be designed and what services should be provided. The nu& system will

focus on database design and on concurrency control and recovery services.

In contrast to many existing object-oriented database systems which add database sys-

tem capabilities to existing object-oriented programming languages, the nu& system will be

The NU& System: Preliminary Report page 5

capable of dealing with a variety of object-oriented programming languages. The two that

will be used �rst are C++ and SmallTalk.

One of the di�culties encountered by anyone teaching data modeling is that most ex-

isting models are research prototypes that are not available either as public domain software

or as commercial products. Even if the software were available commercially, it is unlikely

that the source code would be provided. The nu& system is intended to eliminate this gap.

The nu& system will contain parsers, data model translators and class library generators for

experimenting with semantic and object-oriented data models as well as for integrating data

models with C++ and SmallTalk.

4. The Association Model and Data De�nition Language

While the full architecture of the nu& system remains to be designed, some components

are already in development. The initial focus was on designing a basic data model which

would have interfaces with programming languages in one direction, with the internal storage

structures in another, and with various higher-level semantic data models in a third. The

translation from basic data model to programming language is the class library generator.

This report is concerned with a proposed data model called the association model and with

the class library generator from the association model and C++.

The data de�nition language for the association model uses standard tools for lexical

scanning and parsing. Tokens are either punctuation marks (colon, semicolon, etc.), iden-

ti�ers (de�ned as in C) or a number (string of digits). The lexical scanner supports C++

style comments. The scanner understands the output of the C preprocesser.

The grammar is unusual in having no reserved words. There are special words used by

the grammar, but any of these may also be used as names in any one of the name spaces.

The reason for this unusual feature is to accommodate a graphical interface. The DDL would

then be the internal language for storing the schema. It would be unnatural to have reserved

words in such an interface, so it was decided not to require them in the textual version.

There are 11 kinds of name space. The context determines the name space of an

identi�er. A given identi�er can appear in any number of name spaces. Although there

was no compelling reason for having so many name spaces, neither was there a compelling

argument for combining any of the name spaces. The name spaces are as follows:

1. schema_name There is exactly one of these.

2. category_name This is the name of a category, globally unique.

3. association_name These may be overloaded.

4. attribute_name Separate name space for every category.

5. index_name Separate name space for every category.

6. subclassification_name Separate name space for every category.

7. transaction_name Separate name space for every category.

8. constraint_name Separate name space for every category.

9. enumerator_name These must be globally unique.

10.class_name These must be globally unique.

11.trigger_name These must be globally unique.

Baclawski, Mark, Newby and Ramachandran page 6

The grammar of the association model is written in yacc notation and is an unambigu-

ous grammar. Tokens are written in uppercase and non-terminals in lowercase. When an

identi�er is part of a reduction that de�nes the identi�er within one of the name spaces,

it is inserted into the appropriate name space with the procedure define_name. When a

reduction uses an identi�er that should be de�ned elsewhere, then the identi�er is implicitly

declared to be within one of the name spaces with the procedure declare_name. When pars-

ing is completed, the symbol table is checked to be sure that within each name space every

identi�er that is declared or de�ned is de�ned exactly once. The procedure make_id_token

changes one of the special tokens into an identi�er.

schema

: SCHEMA id LBRACE schema_component_list RBRACE

{ reduction->define_name (2, schema_name);

;

schema_component_list

: schema_component_list schema_component_slot

|

;

schema_component_slot

: schema_component

| SEMICOLON

;

schema_component

: CATEGORY id category_def

{ reduction->define_name (2, category_name);

| ASSOCIATION id assoc_def

{ reduction->define_name (2, association_name);

| ASSOCIATION id CATEGORY id category_def assoc_def

{ reduction->define_name (2, association_name);

reduction->define_name (4, category_name);

;

A schema consists of a sequence of schema components. Each schema component de�nes

either a category or an association. A category is also called a class, entity or type. An

association is also called a relationship. An association can also be a category, and its name

as an association need not be the same as its name as a category.

category_def

: LBRACE category_component_list RBRACE

| COLON category_name_list LBRACE category_component_list rbrace_token

;

category_component_list

: category_component

| category_component SEMICOLON

| category_component SEMICOLON category_component_list

The NU& System: Preliminary Report page 7

;

category_component

: attribute

| index

| subclassification

| transaction

| constraint

;

A category can inherit from a list of more general categories (multiple inheritance). In

C++ terminology, the inheritance is virtual: if B and C both inherit from A and if D inherits

from both B and C, then there will only be one A object contained within D. The de�nition

of a category consists of a list of components, as in the concept of a class in C++.

Each category corresponds to a set of classes generated by the class library generator.

There is one class for a collection of objects of the category, one for a single (generic) object

in one such collection as well as one for iterating over a collection of objects. Still other

classes are generated for various specialized purposes, such as indexing.

assoc_def

: OF id participation ITH LBRACE category_participation_list RBRACE

{ reduction->declare_name (2, category_name);

| OF id participation ITH id participation

{ reduction->declare_name (2, category_name);

reduction->declare_name (, category_name);

;

category_participation_list

: id participation

{ reduction->declare_name (1, category_name);

| id participation COMMA

{ reduction->declare_name (1, category_name);

| category_participation_list id participation

{ reduction->declare_name (2, category_name);

| category_participation_list id participation COMMA

{ reduction->declare_name (2, category_name);

;

participation

: N MBER TO N MBER

| N MBER TO INFINITE

|

;

An association is a relationship among two or more categories. The categories need

not be distinct. The �rst category is special and is called the anchor of the association.

Association names may be overloaded, the only restriction being that two associations having

the same name must have either di�erent anchors or a di�erent set of associated categories.

The order of the associated categories is not signi�cant (except that the anchor category is

Baclawski, Mark, Newby and Ramachandran page 8

distinguished).

An association is normally value-based: an instance is determined by the objects that

participate in it. In other words, an association is normally a relation as in the relational

model. However, if an association is declared to be also a category, then the association is

object-based: there may be distinct instances having the same participating objects, and the

identity of an instance does not change when modi�cations are made.

A participation speci�es the least and greatest number of times that an object must

participate in the association. The only N MBERs allowed are zero and one, and there are

only four meaningful participations: 0 to 1, 0 to in�nite, 1 to 1 and 1 to in�nite. These

correspond to the constraints \at most once," \no constraint," \exactly once," and \at least

once," respectively.

From the point of view of the class library generator, each association has a correspond-

ing class as well as a function member in the classes associated with the anchor category.

This function member takes values in the class corresponding to the association.

attribute

: attr_type id attr_constraint

{ reduction->declare_name (2, attribute_name);

| EY attr_type id attr_constraint

{ reduction->declare_name (, attribute_name);

| M LTI AL ED attr_type id attr_constraint

{ reduction->declare_name (, attribute_name);

| MANDATORY attr_type id attr_constraint

{ reduction->declare_name (, attribute_name);

| M LTI AL ED MANDATORY attr_type id attr_constraint

{ reduction->declare_name (4, attribute_name);

| MANDATORY M LTI AL ED attr_type id attr_constraint

{ reduction->declare_name (4, attribute_name);

;

index

: INDE id index_def

{ reduction->declare_name (2, index_name);

| NI E INDE id index_def

{ reduction->declare_name (, index_name);

;

subclassification

: S BCLASSIFICATION id LBRACE category_name_list RBRACE

{ reduction->declare_name (2, subclassification_name);

| TOTAL S BCLASSIFICATION id LBRACE category_name_list RBRACE

{ reduction->declare_name (, subclassification_name);

| S BCLASSIFICATION id DIS OINT LBRACE category_name_list RBRACE

{ reduction->declare_name (2, subclassification_name);

| TOTAL S BCLASSIFICATION id DIS OINT LBRACE category_name_list RBRACE

{ reduction->declare_name (, subclassification_name);

The NU& System: Preliminary Report page 9

;

transaction

: TRANSACTION id { reduction->declare_name (2, transaction_name);

;

constraint

: create constraint_specifier

| modify constraint_specifier

| delete constraint_specifier

;

attr_constraint

: CONSTRAINED constraint_specifier

| CONSTRAINED BY constraint_specifier

|

;

constraint_specifier

: constraint_function

| constraint_function TRIGGERED id

{ reduction->declare_name (, trigger_name);

| constraint_function TRIGGERED BY id

{ reduction->declare_name (4, trigger_name);

;

A component of a category may be an attribute, index, subclassi�cation, transaction

or constraint. An attribute is the traditional concept of a �eld of a record or data member

of a class, except that they are allowed to be multivalued. An attribute is mandatory if it

cannot be null. In the multivalued case, this means that the set of values must be nonempty.

An attribute can also be declared to be a ey for the category. A key attribute is single-

valued and cannot be null. When a category has a key attribute, the category becomes a

value-based category.

An index is an access path for the category. There need not be an index �le correspond-

ing to an index, although such a �le would be a natural way to provide this feature. Having

an index means that objects in the category can be selected based on the value of attributes

in the index. A unique index is the same as a key when there is only one attribute in the

index. As with a key attribute, a category becomes value-based when it has a unique index.

A subclassi cation speci�es a set of distinct subcategories which inherit from the given

category. Each subcategory in the set must inherit from the given category. Subclassi�cations

allow one to specify disjointness and covering constraints. A set of subcategories covers a

category if every object of the category is an object of at least one subcategory in the set.

When a subclassi�cation is total, its set of subcategories covers the category.

A transaction is a procedure that is executed atomically. All the elementary operations

performed on objects in the database are atomic. It is only when a set of these must be

performed atomically that it is necessary to declare them a transaction.

A constraint is a predicate (i.e., a boolean function without side-e�ects) on the data-

base. Constraints can be speci�ed to be tested whenever an object is constructed (a create

Baclawski, Mark, Newby and Ramachandran page 10

constraint), whenever an object is deallocated (a delete constraint) or whenever any object in

the category is changed (a modi y constraint). Constraints can also be attached to individual

attributes, in which case they are tested only when the attributed is modi�ed.

Since constraints may be time-consuming to evaluate, a two-step method can be spec-

i�ed. A relatively easy to evaluate trigger is evaluated whenever the constraint should be

checked. Only if the trigger evaluates to true is the constraint checked.

create

: CREATE

| CREATE CONSTRAINT

;

modify

: MODIFY

| MODIFY CONSTRAINT

;

delete

: DELETE

| DELETE CONSTRAINT

;

constraint_function

: GLOBAL id { reduction->declare_name (2, constraint_name);

| FRIEND id { reduction->declare_name (2, constraint_name);

| MEMBER id { reduction->declare_name (2, constraint_name);

;

Constraint functions may be global functions or they may be associated with the cate-

gory where they are used. The terminology is borrowed from C++.

attr_type

: integral_type

| NSIGNED integral_type

| base_type

| STRING N MBER

| EN M LBRACE enum_list RBRACE

| CLASS id { reduction->declare_name (2, class_name);

;

integral_type

: CHAR

| INT

| SHORT

| LONG

;

base_type

: BOOLEAN

| FLOAT

The NU& System: Preliminary Report page 11

| DO BLE

| TE T

;

enum_list

: enum_list COMMA enumerator

| enumerator

;

enumerator

: id { reduction->declare_name (1, enumerator_name);

|

;

The built-in types are as in C or C++, except that string and text types are considered

to be built-in. A string is a �xed-length array of characters, while text is a variable-length

sequence of characters.

index_def

: index_component_list

| LBRACE index_component_list RBRACE

| LBRACE index_component_list COMMA RBRACE

;

index_component_list

: index_component

| index_component_list COMMA index_component

;

index_component

: id { reduction->declare_name (1, attribute_name);

| DESCENDING id { reduction->declare_name (2, attribute_name);

;

An index is de�ned by specifying a sequence of attributes. Each attribute can be

ordered in ascending or descending order. This applies only to those types for which an

order is de�ned. If a type does not have an order, then the attribute can still appear in the

index, but range queries on that attribute are not de�ned.

category_name_list

: id { reduction->attach_name (1, category_name);

| id COMMA { reduction->attach_name (1, category_name);

| category_name_list id { reduction->attach_name (2, category_name);

| category_name_list id COMMA { reduction->attach_name (2, category_name);

;

id

: ID | SCHEMA { goto make_id;

| CATEGORY { goto make_id; | ASSOCIATION { goto make_id;

| OF { goto make_id; | ITH { goto make_id;

| TO { goto make_id; | INDE { goto make_id;

Baclawski, Mark, Newby and Ramachandran page 12

| S BCLASSIFICATION { goto make_id; | TRANSACTION { goto make_id;

| CREATE { goto make_id; | MODIFY { goto make_id;

| DELETE { goto make_id; | CONSTRAINT { goto make_id;

| EY { goto make_id; | M LTI AL ED { goto make_id;

| MANDATORY { goto make_id; | CONSTRAINED { goto make_id;

| BY { goto make_id; | NI E { goto make_id;

| DESCENDING { goto make_id; | DIS OINT { goto make_id;

| TOTAL { goto make_id; | TRIGGERED { goto make_id;

| GLOBAL { goto make_id; | FRIEND { goto make_id;

| MEMBER { goto make_id; | CHAR { goto make_id;

| INT { goto make_id; | SHORT { goto make_id;

| LONG { goto make_id; | FLOAT { goto make_id;

| DO BLE { goto make_id; | BOOLEAN { goto make_id;

| TE T { goto make_id; | NSIGNED { goto make_id;

| EN M { goto make_id; | STRING { goto make_id;

| CLASS { make_id: reduction->make_id_token();

;

The remaining reductions of the grammar specify that a list of categories is a sequence

of category names optionally separated by commas, and that none of the special tokens

are reserved. It is more di�cult to construct an unambiguous grammar when there are no

reserved words, but we felt that compatibility with a graphical interface was important.

. valuation of the Association Model

The association model established that it is possible to develop an object-oriented se-

mantic data model. This is useful in itself as well as furthering the overall objectives of nu&.

Although at one time we considered using this model as the basic model of nu&, it soon

became clear that it was not suitable for this role, and another one was designed. The asso-

ciation model will serve as the higher-level semantic data model for nu&, and will interact

with the basic data model via a translator. The basic model will interact with C++ and

SmallTalk via class library generators.

The rest of this section is a discussion of the shortcomings of the association model that

disqualify it as a candidate for the basic model. Few of these criticisms apply to the model

in its current role as higher-level semantic data model for nu&.

Criticism of any object-oriented data model must proceed systematically since there are

so many features to consider. We begin with a discussion of the impedance mismatch. We

then criticize the object-oriented aspects of the model. Bancilhon's discussion [Bancilhon 88]

of the main features of an object-oriented system will form the basis this discussion. Finally,

we mention the database management aspects.

The most important consideration is the impedance mismatch. Although we clearly

were making progress on this, there was clearly a one-sidedness about the approach: the

data model was translated into C++ and not the other way around. It would be much better

to have a data model that would support a reasonably general C++ (or SmallTalk) class.

Moreover the model should allow for incremental improvements that would progressively

The NU& System: Preliminary Report page 13

expand the kinds of class supported. Conversely, nearly any possible schema in the data

model should be expressible in C++ or SmallTalk. These are ambitious goals and represent

very hard problems, but they are well worth tackling.

Consider next the object-oriented aspects of the model. The �rst important feature is

encapsulation. In this respect, the association model is inadequate. There is no technique

in the model for hiding any component of a category. However, this could be added by

specifying public and private components as in C++. The fact that categories only have

data members and related components (indices, constraints and triggers) is also a failure of

encapsulation: no allowance is made for specifying general function members. The concept of

transaction was supposed to ful�ll this requirement, but it was never developed well enough

for this.

The second feature is object identity. This is supported very well, with both object-

based and value-based categories and associations provided. The association model also

provides a system of types and classes, and multiple inheritance is fully supported.

The last important feature is late binding. This is not provided. In fact, since function

members are not supported, the concept of late binding cannot even be expressed in this

model.

A further disadvantage of the association model is its complexity. There are too many

ways to accomplish the same thing. However, this is not that signi�cant an issue, since the

association model is less complex than most other semantic data models despite the many

additional features, such as object identity, that it provides.

From the point of view of database management, one criticism of the association model

is that it does not include a view mechanism. This is not that di�cult to provide. In fact,

the subclassi�cation concept was introduced primarily to aid in de�ning views: only one

subclassi�cation of a category would normally be visible in a given view.

Another di�culty with the association model is the fact that categories cannot have

named roles within an association. This makes it di�cult for the same category to be used

more than once as a non-anchor category. This can be remedied easily by adding optional

role names to the de�nition of an association.

. onclusion and uture ork on the NU& System

This report describes the current status of the nu& object-oriented semantic data model-

ing tool. The objectives and initial design decisions have been made, and a detailed discussion

of these has been given.

The only component of the system that is complete at this time is a semantic data model

called the association model. This model is an appealing model which serves as a bridge

between the semantic data models and the object-oriented data models, and will serve as

the higher-level semantic data model of the nu& system.

The next report will be made in late 1989 or early 1990. This report will introduce the

basic model as well as give more details about the architecture of the system. It is planned

to have a working system ready for classroom use in the Spring Quarter of 1990. At that

Baclawski, Mark, Newby and Ramachandran page 14

point, the third report should be ready. The third report will serve as the user manual for

the students in the class.

eferences

[aclaws i 87] . s i, networ emulation tool, r . . r

r , pages 198{206, ugust, 1987.

[aclaws i, ar , amachandran 89] . s i, . . , N T:

an object-oriented networ emulation tool, Northeastern University, ollege of omputer Science,

1989.

[ancilhon 88] . i , bject-oriented database systems, r . . r

, ustin, Te as, pages 152{162, arch, 1988.

[anerjee et al. 87] . , . , . , . i , . , . . i ,

ata model issues for object-oriented applications, r . r ,

5 1 :3{26, 1987.

