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In .this brief note we show that the canonical module of the
Stanley—Reisner ring of a doubly Cohen—Macaulay ordered set is isomorphic
to a certain ideal of the same ring. For a general finite partially ordered set,
the corresponding ideal is isomorphic to a submodule of the canonical
module. For an introduction to Cohen—Macaulay ordered sets from the ring-
theoretical point of view seec Garsia [4] and Baclawski-Garsia [3]. Doubly
Cohen—-Macaulay ordered sets were introduced in Baclawski [2].

Let 4 be a finite simplicial complex of rank r (dimension r — 1) on vertex
set V. We write 4, for {cE€ 4 | |o|=k}. We assume that 4 can be colored,
i.e., there exists a map c: V- [r] = {1, 2,..., r} such that for every ¢ € 4,
[c(o)| = o]; and we fix a choice of coloring henceforth. The most important
example of a colored complex is the simplicial complex A(P) of chains of a
partially ordered set (poset)-P. For example, the map c¢: P— [r] given by

¢(x) = max{k | there exists x,,...,x,_; EP

such that x, < x, < --- < x,_,; < x},

is a coloring of A(P). _ ,
If we regard each element of ¥ as an indeterminate, then the
Stanley—Reisner ring is the quotient ring

Kld}=K[p|v € V]/(v; - v | {v s 0} € D).
Let 8, € K[4] be defined by
;= > vx(c(v)=1),

vevr
where y(7') is 1 if .#° is true and 0, otherwise. We call 6, the ith rank sum of
K[4]. The sequence 6, ,..., §, is a homogeneous system of parameters (frame)
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of K[A]. We write K|8] for K|0,,..., 8,] < K|4]. The simplicial complex 4 is
said to be Cohen—-Macaulay (CM) if K|4] is a free K[#] module.

A simplicial complex 4 is said to be 2-CM connected (or doubly CM) if
for every vertex v € V, we have

MNpl={oc€d|vé&a)} is CM, )]
r(d\{v}) = r(4). (2)

An important example of such a complex is A(P), where P = L\{0, 1} and L
is a finite geometric lattice. For a proof of this and for other examples see
[2].

The canonical module of a CM graded K algebra R is the graded R
module

Q(R) = HomK-[a](R, K|a]),

where a,,..., @, is any frame of R. The canonical module is independent of
the choice of a frame, see Herzog—Kunz |5, Remark 5.19]. We will use this
as the definition of 2(R) even when R is not CM.

We will use multiindex notation for denoting nonzero monomials of K[4].
Thus if N= (n,,..., n,) is a sequence of nonnegative integers, then v" stands
for the monomial v¥ =[T%_, (v,)". We will always assume that the vertices
Uy Uy in such a monomial satisfy c(v,) < c(v,) < -+ < ¢(v,). The rank set
r(v") is the multiset for which each color ¢(v;) occurs exactly as often as v,
occurs as a factor of vV, Equivalently we may think of r(v") as the r-tuple
>k ne(c(v;)), where e(j) is the r-tuple whose ith component is ;. The
vector p is the r-tuple (1,.,1)=>"7_,e(i). The rank set defines a
multigrading on K[A]. The support, supp(v™), of the monomial v” is the set
{v;|n; > 0}. Recall that an (algebraic) chain is a formal linear combination
of elements of 4. For each ¢ € 4 there is a corresponding monomial [ | o =
[ Ive, v € K[4]. Thus we may regard the space of chains as a subspace of
K[4]. In particular the (r — 1)th reduced homology H,_ ,(d,K), being a
subspace of the space of chains of rank r, is a subspace of K[4]. Write J(4)
for the ideal of K[4] generated by H, (4, K).

Define a linear map ¢: K[4] - K|6] as

oMy =67 007 (V) > 2p,

=0, otherwise.

The inequality r(v")>2p is componentwise. Note that k=r when this
inequality holds. Now ¢ is a multihomogeneous linear map of degree —2r,
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which is generally not a K[f] homomorphism. We use the map ¢ to define a
homomorphism

as follows: if g € J(4) and f € K[4], then let w(g)(f) be p(gf). It is easy to
see that y is a K[4] homomorphism. We first show that y is injective; no
special property of J(d4) is used for this. Next we prove that Imy is
contained in Q2(K[4]). Finally, we prove that Im y = 2(K{4]) when 4 is
doubly CM.

LEMMA. v is injective.

Proof. Suppose that w(g)=0. We may assume that g is
multihomogeneous. Note that every term of g is supported on a simplex
6 € 4,. Let av™ be one term of g. Then 0 = y(g)(v*) =¢(gv°) = p(av"**?) =
a6”~°. Thus a = 0. We may do the same for any term of g. Hence g =0.

Q.E.D.

&
We now come to our first main result.

THEOREM 1. For any colored complex A, there is a monomorphism
y: J(4) - Q(K[4])).

Proof. We wish to show that Im y C Homye (K (4], K[8]). Clearly it
suffices to show that ¢(6, g) = 6,0(g) for any i and any g € J(4). Moreover
we may assume that g is multihomogeneous.

Consider first the case r(g) > 2p. If g were simply a monomial v", then
6, g would be v+ and hence ¢(f,g) = 8" "% = 6,¢(g). In general g
would be a linear combination of such terms, so the result follows by
linearity. Next suppose that e(i) + r(g) } 2p. Then ¢(f;g)=0 and ¢(g)=0
so this case also follows.

There remains the case for which r(g)} 2p but e(i) + r(g) > 2p. Each
term of g has the form av®, where N = (n,,..,, n,) satisfies ;=1 and n; > 2
for j#i. By definition of J(4) we may find g, € K[4] and f,€ H,_,(4,K)
such that g=3"; g,f;- Now r(f;)=p so the support of every term of g is a
simplex in 4,_,. Thus we may write

fi= ZA @) [[o &= ; dj(r) h(t),

where ¢;(0) and dj(r) are in K, and where A(z) is the unique monomial such
that r(h(z)) = r(g;) and supp(h(r)) = . We can then compute

g=2gf=> X > dr)ci(o) h(r) [ ] o.

j T€A,_| g€,
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Now 4(t) [ [ 6 =0 unless r — 0. Thus

g=> > ¢(0)d(t) k() [ [ ox(o > 7).

J o,t

Next we use the fact that f; € A _(4,K)=Ker(?). Thus
0=0f=0> co)]]o

=N o) Y (=) [T x(r c o)

t€A,

» (—1)cte\ cj(o)) [T

ooT

Since ¢(o\7) = r — ¢(r) depends only on 1, it follows that for every 7 € 4, .,
we have Y, c/(0)=0. Now ¢(6,h(r) [T o) =6"+*? is the same for
every 0 €4, and 1€ 4, _,. Thus

> cj(o)) d(r) '@+ =,

(e g) 2

00,8)=3Y (
j T

Since ¢(g)=0, it follows that ¢(6;,8)=6,0(g), so ¢ is a Kl[0]
homomorphism in all cases. Q.E.D.

We now invoke a characterization of the 2-CM property in terms of
resolutions in order to obtain

THEOREM 2. Let 4 be a colored, CM complex. Then 4 is 2 CM if and
only if w: J(A) - (K |4}) is an isomorphism.

Proof. Since 4 is CM, |u(4)|=k,_,(4, K) =dim, H,_ (4, K). Now if y
is an isomorphism, then Q(K[4]) is generated by |u(4)| elements. By |2,
Corollary 4.7], 4 is 2 CM.

Conversely, in the proof of [2, Theorem 4.5] it is shown that if 4 is 2 CM,
then the minimum number of generators of £2(K[4]) is |u(d4)|, and moreover,
all of the generators in a minimum set have the same degree. See also the
discussion in [1, Sect. 7). Since 2(K[4])+# 0 this implies that u(P) # 0 and
hence that H, ,(4, K)# 0. By standard results in commutative algebra (see
[3, Proposition 2.3(3)]), K[4] is a free K[@] module with a basis given by
any linear basis of K[4]/(d). By [3, Theorem 5.1], the highest degree of a
homogeneous element of K[4]/(6) is exactly r, since H, (4, K)# 0. Thus
the lowest degree of an element of £2(K[4]) is —r. Now y has degree —2r so
the generators of J(4) get mapped to elements of 2(K|[4]) of degree —r.
Since y is injective by Theorem 1, and since 2(K[4]) has |u(4)| =k, (4, K)
generators all of the same degree, it follows that y is also surjective. Q.E.D.
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Remark. 1t is clear that ¢ allows us to define an injective map y: K[4] >
Hom,(K[4],K[0]) for any pure, colorable, simplicial complex. Thus
Q(K|4)]) is isomorphic to an ideal of K[4] whenever Im y contains 2(K[4]).
It would be interesting to find conditions under which this holds.
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