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INTRODUCTION 

It has been a long-standing conjecture of Rota [14] that there is a 
homology theory on the category of ordered sets such that the Betti 
numbers of a geometric lattice are the Whitney numbers of the first kind. 
The purpose of this paper is to describe such a theory. We will also 
show that our theory and the usual simplicial theory are related by a 
spectral sequence. 

The theory we develop is a sheaf cohomology on a topological space 
associated to the ordered set. It is however, also possible to develop 
the theory in terms of specific simplicial chain complexes. For those 
who find sheaves unpalatable, we describe these chain complexes in 
Section 5. 

In Section 1, we develop some sheaf theory for the special case in 
which we will be dealing. In the next section, we examine the cohomology 
theories of two sheaves: the sheaf of locally constant integer-valued 
functions and the sheaf A, based on the “valuation ring” of Rota [ll]. 
The former sheaf, of course, gives the ordinary simplicial cohomology 
theory, while ~2’ gives the same theory in dimensions greater than zero 
when the ordered set is finite. In Section 3, we define a sheaf Y.Y whose 
cohomology groups are groups whose ranks are the Whitney numbers 
when the ordered set (after adjoining a zero) is a geometric lattice. In the 
next section, we describe a spectral sequence that relates the cohomology 
theory of YY to the ordinary simplicial cohomology theory. In the last 
section, we describe a way to relate “transitive” elements of the incidence 
algebra of the ordered set to certain sheaves on the ordered set. Simplicial 
chain complexes that give the cohomology of these sheaves are then 
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described, giving an alternative approach to the theories developed in the 
earlier sections. 

The idea of using sheaf theory for studying ordered sets is not new; 
see, for example, Graves and Molnar [9]. It was their work that inspired 
this paper. The author wishes to thank Prof. Rota and Prof. Graves 
for many discussions on this subject. 

1. PRELIMINARIES 

Let P be an ordered set. An increasing subset (or order-Jilter) of P is 
a subset UC P such that x E U and y > x imply that y E U. One 
similarly defines decreasing subset (or order-ideal). The increasing subsets 
of P are easily seen to be the open sets for a topology on P. In the sequel, 
we always assume that ordered sets are endowed with this topology. 
The order-preserving maps from P to another ordered set, Q, are 
precisely the continuous functions from P to Q. Every point x E P is 
contained in a unique smallest open set: 

called the principal jilter of X. See Graves and Molnar [9]. 
We may also regard P as a category. The objects of this category are 

the elements of P, and the morphisms are relations of the form x < y, 
the source of this morphism being x and the target being y. Let V be 
the category of abelian groups and homomorphisms. A sheaf on P is a 
covariant functor 9: P -+ %?. The value of 9 at x E P is a group called 
the stalk of 9 at x and will be written S( V,). For x < y in P, the 
corresponding homomorphism F( V,) -+ $F( V,) is called the restriction 
from V, to V, . Let U C P be an open subset, and let U* be the ordered 
set obtained by reversing the directions of the inequalities in U (i.e., 
x < y in U* if and only if x >, y in U). Then the restriction of F to U 
is an inverse system (in the general sense) on U*. We write F(U) for 
the inverse limit JimzeU* S(V,). This notation is easily seen to be 
consistant with the notation F( V,) used for the stalks. It is easy to see 
that 9, as a functor on the category of open subsets and inclusions of P, 
is a sheaf on P in the usual sense of the term. 

A sheaf S on P is said to be flasque if, for any open set U C P, the 
restriction S(P) -+ 9(U) is surjective. Let 9 be a sheaf on P. A flasque 
resolution of F is an exact sequence: 
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of sheaves on P such that C.3 is flasque for all i > 0. Replacing each of 
these sheaves by the group C?(P), defines a complex 

0 + CO(P) --f Cl(P) -+ e(P) -+ .a. 

of groups, whose cohomology is called the cohomology of P with 
coejicients in the sheaf 9 and is denoted Hi(P, %). We write H*(P, 3) 
for the (graded) direct sum of the Hi(P, g). One can show that the 
cohomology is independent, up to a natural isomorphism, of the flasque 
resolution used. See Godement [8,11.4.7.1]. 

Let 9 be a sheaf on P. The sheaf of discontinuous sections of 3 is the 
sheaf [F] defined on each open U C P by 

with restrictions given by the obvious projection homomorphisms. 
Clearly, [9] is a flasque sheaf, and the canonical morphism E: 9 --t [9] 
induced by the restrictions 9(U) + 9( V,) is an injective morphism 
of sheaves. The inductively defined sequence of sheaves: 

0 - F -& [F] -f% [Coker(c)] % [Coker(d,)] * ... 

gives a flasque resolution of 9 called the canonical resolution of 9. 
Thus every sheaf on P has a flasque resolution, and sheaf cohomology 
is defined for every sheaf on P. 

For the basic properties of sheaves and sheaf cohomology, see 
Godement [8]. 

Let P and Q be ordered sets and f: P + Q an order-preserving map. 
Let g be a sheaf on P. The direct image sheaf of 9 on Q is the sheaf 
defined by: (f*S)( U) = 9(f-‘( U)) for open subsets U of P. 

LEMMA 1.1. Let P be a decreasing subset of Q and i: P -+ Q the 
inclusion. Then, for any sheaf 9 on P, there is a natural isomorphism: 

H”(Q, i*P) gg H*(P, 9). 

Proof. Since P is a descending subset of Q, if x E Q and V, n P # 0, 
then x E P. Now i.JS](V,) = [Fj( V, n P) = &,Ev,?p F(VU n P), 
and [i*F]( V,) = I&,i,S( V,) = nvEYZ F( V, n P). Since V, n P is 
the principal filter of y m P when y E P and since V, n P = 0 when 
y .$ P, these two products coincide. Therefore, i*[9] and [i&F] are 
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naturally isomorphic. By an inductive procedure, we extend this 
isomorphism to an isomorphism of the canonical resolution of i,F 
with the direct image of the canonical resolution of 9. 

2. THE SHEAVES 2 AND & 

We define the sheaf 2 of locally constant integer-valued functions on P 
by 2( I’,) = Z f or all x E P, with the restrictions being the identity maps. 
More generally, for an arbitrary abelian group G, we define G in a 
similar fashion. 

We regard P as a simplicial complex in the usual fashion: the vertices 
are the elements of P, and the Fz-simplices are the totally ordered K + 1 
element subsets of P. We denote the simplicial homology and cohomology 
of P with coefficients in the abelian group G by H,(P, G) and H*(P, G) 
respectively. As one would expect, the simplicial cohomology and the 
cohomology with coefficients in G coincide. 

THEOREM 2.1. For any ordered set P and abelian group G, there is a 
natural isomorphism: 

H*(P, G) E H*(P, G). 

Proof. A more general result is proved by Deheuvels [5, Section 111. 
We will give a brief sketch of a proof. 

Let C,(P, Z) be the simplicial chain complex of P. Let C*(P, G) be 
the dual of C,(P, Z), i.e., Hom(C,(P, Z), G). The cohomology of 
C*(P, G) is then the simplicial cohomology H*(P, G). Since C*(P, G) 
is functorial in P, we may define a complex of sheaves by C*(P, G)( V,) = 
C*( V, , G) for all x E P. Moreover, there is a natural inclusion of 
sheaves G --f C”(P, G) given by mapping g E G(V,) to the element 
xg E C”( I’, , G) defined by Q,(Y) = g for ally E I’, . Since the simplicial 
cohomology of a principal filter is trivial, the following is an exact 
sequence of sheaves on P: 

O-e+C”(P,G)+C1(P,G)+.... 

It is easily checked that the sheaves Ci(P, G) are all flasque. In fact, if 
we define a sheaf 9Yd by Si( V,) = the G-dual of the free abelian group 
generated by all i-simplices of P with minimal element X, then 
Ci(P, G) e [S,]. Th ere ore, f C*(P, G) is a flasque resolution of G. 
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Since the group of global sections, C?(P, G)(P), is just Ci(P, G), for all i, 
the result follows. 

In [ll], Rota introduced an augmented ring V(L) associated to every 
distributive lattice L, called the valuation ring of L. This ring is formed 
as follows. Let F(L) be the free abelian group generated by L. We give 
this group a ring structure by defining the product of the basis elements 
x, y EL to be x A y. Now let J be the ideal of F(L) generated by elements 
of the form x + y - x A y - x v y, for x, y EL. The valuation ring of 
L is then the quotient ring V(L) = F(L)/], adjoining an identity element 
if F(L)/] does not already have one. We define a homomorphism of rings, 
E: F(L) --f 2, by e(x) = 1 for all x EL. Since J C Ker(e), E induces a 
ring homomorphism E: V(L) -+ Z which we call the augmentation 
of V(L). 

For an ordered set Q, let L(Q) be the lattice of decreasing subsets of Q, 
and write M(Q) for V(L(Q)). Th e f unctorial properties of L, V and M 
should be clear: V is covariant while both L and M are contravariant. 
Hence we may define a sheaf on P by J&( V,) = M( V,), for all x E Q, 
with the restriction &( V,) + -%e( V,), for x < y in Q, being induced 
functorially by the inclusion V, + V, . Note that, in general, 

d(Q) f M(Q). d is in fact a sheaf of augmented rings, but we do not 
use this. 

An ordered set P is said to be upper jnite [lower jinite] if the principal 
filters V, [principal ideals Jz = { y E P 1 y < x)] are finite for all x E P. 

THEOREM 2..2. If Q is an upper jinite ordered set, then for i > 0: 

WQ, J@ cz WQ, 2). 

Moreover, if Q ;is$nite and connected, then HO(Q, A’) E M(Q). 

Proof. Each stalk &(V,) contains an element x, which corresponds 
to the minimum element of the lattice L( V,). We map Z to 4 by sending 
lEZ(V,) =Zt o x, E A( V,) for all x E Q. This map is easily seen to 
define an injective morphism of sheaves i: Z -+ J%‘. We may also map J% 
to Z by mapping &(V,) -+ Z(V,) = Z via the augmentation. This map 
defines a surjmective morphism of sheaves, E”: &! -+ Z. Clearly, the 
composition z c’ Z is the identity on Z. Let J be the kernel of Z. Then 2 
coincides with the sheaf denoted M in Graves and Molnar [9]. 

We now prove that J.? s [Z], and hence that 3 is flasque. It is a 
result of Davis [4] that A( V,) E M(V,)/(x,) is a free abelian group 
generated by a set of mutually orthogonal idempotents corresponding 
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bijectively to the set V, . Moreover, the restriction X( V,) + J( V,) 
for x < y is given by the projection homomorphism of the first onto the 
second as a direct summand. Since for finite sets of abelian groups the 
direct sum and the direct product coincide, it follows that J? z [Z]. 

Now the morphism i: Z -+ & splits the short exact sequence of 
sheaves: 

O-Z’E.M-~~+0. 

Since flasque sheaves are cohomologically trivial, the long exact sequence 
of sheaf cohomology gives the result, by Theorem 2.1. 

We add that there are results corresponding to those above for 
cosheaves instead of sheaves. Such objects were studied extensively by 
Deheuvels [5]. W e will just state the results briefly and without proof. 

A cosheaf on an ordered set P is a contravairant functor 9: P + V. 
The value of F at x E P is called the stalk of g at X, and is denoted 
9( V.J. For x < y in P, the homomorphism 9( V,) + 9( V,) is called 
the extension from V, to V, . For an open subset U Z P, S(U) is the 
direct limit hzEU* s( V,), and we call 9(U) the group of cosections of 9 
on U. A cosheaf 9 is said to be jlasque if, for any open set UC P, the 
extension g(U) -+ F(P) is injective. AJEasque resolu’tion of the cosheaf 9 
is an exact sequence: 

of cosheaves on P such that Ci is flasque for all i >, 0. As above, we may 
use flasque resolutions of cosheaves to define the homology of P with 
coeficients in a cosheaf 9, denoted H,(P, 9). 

We define the cosheaf 2’ by Z’( V,) = Z for all x E P, with the 
extensions all being the identity map. For an abelian group G, we define 
G’ similarly. 

THEOREM 2.3. For any ordered set P and abelian group G, there is a 
natural isomorphism: 

H,(P, e’) E H,(P, G). 

For an ordered set Q, we define the valuation cosheaf A’ by &I’( V,) = 
Hom(WV,), Z), with the obvious extensions. 

THEOREM 2.4. If Q is any ordered set, then for i > 0: 

f&(Q, J’U = f&(0, Z). 

Moreover, if Q is connected, then HO(Q, M’) E Hom(M(Q), Z). 
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3. THE SHEAF W 

Let P be a lower finite ordered set. We denote by P the ordered set 
obtained by adjoining a unique minimum element 0 to P (whether or 
not P already has a minimum element). Then p is locally finite so we may 
speak of the incidence algebra I(p) of p (with coefficients in 2) with zeta 
function 5, Mobius function p and identity element 6. See [6] or [12] 
for the definitions and terminology. 

Let x E P, and let G be an abelian group. We define the sheaf G(x) on 
P bv 

G(x)(~~‘,) = ~~ 

if x =y, 
if x z y ,  

with the restrictions, of course, all being zero. We will be examining the 
cohomology of P with coefficients in the sheaf G(x) in terms of the 
Mobius function on p. 

LEMMA 3.1. Let P be a lower Jinite ordered set, x E P and G an 
abelian group. Then 

Ho@‘, G(x)) s 1: 
if x is a minimal element of P, 
if x is not minimal in P, 

andfor i > 0 

Hi(P, G(x)) z r?ii-‘((0, x), G). 

Proof. Let 7: G(x) -+ [G(x)] be th e canonical inclusion of sheaves. 
We then get the short exact sequence of sheaves on P ’ 

0 --j G(x) --L PWI - Coker(7) ---+ 0. 

Examining this sequence on stalks, one finds that Coker(r]) is the sheaf 
of locally constant G-valued functions on the open interval (0, X) in P. 
Hence, by Lemma 1 .l and Theorem 2.1, the cohomology of Coker(r)) 
is just the simplicial cohomology of (0, X) with coefficients in G. 

Since [G(x)] is flasque, the long exact sequence of the above short 
exact sequence of sheaves gives the result for i > 1. For i = 0 and 1, 
consider the first part of the long exact sequence: 

0 + H”(P, G(x)) -+ HO(P, [G(x)]) ---f HO(P, Coker(7)) -+ W(P, G(x)) -+ 0. 

If x is minimal, then (0, X) = o ; hence H”(P, Coker(7)) = 0. Thus 
H1(P, G(x)) = 0 = Z?O((O, ) x , G , and HO(P, G(x)) g HO(P, [G(x)]) G G, ) 
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in this case. If x is not minimal, then HO(P, Coker(q)) is isomorphic to a 
direct sum of copies of G, the number of copies being the number of 
connected components of (0, x). Now the map G g HO(P, [G(x)]) + 
HO(P, Coker(q)) is easily seen to be the inclusion of G as the diagonal of 
H”(P, Coker(q)). H ence the cokernel of this map is isomorphic to 
RO((O, x), G), and the kernel HO(P, G(x)) is zero. This completes the 
proof. 

COROLLARY 3.2. x(Z(x)) = -p(O,x). 

Proof. By Lemma 3.1, x(Z(x)) = CT=, (-l>i rank(Hi(P, Z(X)) = 
rank(HO(P, Z(X))) - CT=, (-l)i rank(Ai((0, x), Z)). If x is minimal, the 
second term vanishes since (0, X) = o ; and the first term is 1. For x 
minimal in P, we have ~(0, x) = - 1, so the result holds in this case. 
If x is not minimal, the first term vanishes, while the second term is 
one less than the Euler characteristic, x(0, x), of the ordered set (0, X) 
regarded as a simplicial complex. Now Rota [ll, Corollary 2 of 
Theorem 31 has shown that x(0, X) = ~(0, x) + 1. Therefore, the result 
follows also in this case. 

Thus we have a cohomological interpretation of the Mobius function. 
This interpretation is not too far removed from that of Rota [II], the 
difference being the introduction of sheaf cohomology. Compare also 
Griffiths [lo, Section 161. 

COROLLARY 3.3. Hi(P, G(x)) = 0 for i > the maximum length of a 
chain in the ordered set (0, x). 

In general, of course, one gets a great deal of garbage in dimensions 
0 < i < the maximum length of a chain in (0, x). There is, however, 
an important case where this does not occur. 

A finite ordered set Q is said to be a (jkite) geometric lattice if it 
satisfies the following conditions (see [3, Chapter 2-j): 

(a) Q is a lattice (hence has a minimum 0 and a maximum 1); 

(b) every x E Q is a join of atoms; 

(c) if X, y E Q cover x A y, then x v y covers both x and y. 

PROPOSITION 3.4. Let P be a lower finite ordered set such that p is a 
geometric lattice. Let x E P, and let G be an abelian group. If n is the 
maximum length of a chain in (0, x), then 
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(a) Hi(P, G(x)) = Ofor i < n, 

v-4 fw, G( >I x is a direct sum of (- l)“+l ~(0, x) copies of G. 

Proof. The result is clearly trivial for n = 0. We therefore assume 
that n > 0. The proof of (a) then reduces to proving that R((0, x), G) 
is zero for i < n - 1, by Lemma 3.1. Part (b) reduces to showing that 
A+l((O, x), G) is a direct sum of / ~(0, x)I copies of G. By the Universal 
Coefficient Theorem and Corollaries 3.2 and 3.3, we need only show that 
I-&((O, x), 2) = 0 f or i < n - 1, and that fl+r((O, x), 2) is a free 
abelian group. The result is then a consequence of a theorem of Folkman 
[7, Theorem 4.11. 

Let Q be an ordered set with a minimum element 0. A function 
Y: Q --t Z is a rank function for Q if it satisfies: 

(a) ~(0) = 0, 

(b) if x covers y in Q, then r(x) = r( y) + 1. 

It is easily seen that if Q is locally finite, a rank function for Q is unique 
when it exists. Suppose that Q is locally finite and has a rank function, 
and that r-l(m) is finite for all m E Z. We define the kth Whitney number 
(of the first kind) to be 

wk = .,;=, PcL(o, X>. 

In particular, if Q is a geometric lattice, then Q has a rank function; 
hence the Whitney numbers are defined for Q. 

We now define a sheaf ?V on P, for an arbitrary ordered set P, by 
?V( V,) = Z, for x E P, with the restrictions being the zero homo- 
morphism. When P is finite, this sheaf is just the direct sum of the 
sheaves Z(X) as x ranges over P. In a similar fashion, we define a sheaf -ky;, 
for any abelian group G. 

THEOREM 3.5. Let P be an ordered set such that p is a geometric lattice. 
Then Hi(P, #‘“) is a free abelian group of rank (- l)i+l w~+~ for all i 3 0. 

Proof. Since cohomology commutes with finite direct sums, we need 
only add up the ranks of the groups in Proposition 3.4, being careful 
to keep them in the right dimension. The result then follows. 

Hence the cohomology of %‘- has the (absolute values of the) Whitney 
numbers as its set of Betti numbers. 

We note that the condition on P in Theorem 3.5 cannot be easily 
removed. Indeed, one can find ordered sets P for which P is a finite 
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lattice with a rank function, but for which (- 1)” wk is negative for 
some k. In general, one can only assert the following. Let P be an ordered 
set for which the Whitney numbers are defined. Define the sheaf wi 
on P by 

%(“) = [Oz 
if y(x) = i, 
if u(x) # i, 

for all x E P, with the restrictions being the zero homomorphisms. Then 
for all i > 0 we have x(w$) = -wi . These sheaves appear in a more 
natural setting in the spectral sequence to be defined in the next section. 

4. A SPECTRAL SEQUENCE 

Let P be an ordered set. An (increasing) filtration on P is a sequence 

ws.z of closed subsets of P such that P” C Ps+l for all s and such that 
&PS= ia. 

Let Q be any subset of P and 9 any sheaf on P. We define a sheaf 9, 
on P by 

with the restrictions being the zero homomorphism unless the entire 
interval [x, y] is in Q in which case the restriction 9o( V,) -+ 9$( I’,) is 
the same as the corresponding restriction 9( I’,) --t 9(V,) in 9. In 
particular, if P is given a filtration as above, we write Fs for YP. and qq 
for flPMPS . 

For an open subset U of P, the inclusion 9” ---f 9 is a morphism of 
sheaves. This will not generally hold for an arbitrary subset of P. In 
particular, if P is given a filtration, we have a short exact sequence of 
sheaves on P for all s E 2: 

which does not split in general. We also have an inclusion of sheaves 
e+r -+ flS for all s. Hence we may speak of the sheaf SJFs+i on P 
whose support is contained in Ps+l - Ps. 

THEOREM 4.1. Let P be an ordered set with a jiltration. Let 9 be any 
sheuf on P. Then there is an El-spectral sequence: 

-+v, ~p/~p+l> =+ H”(P, 9). 
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Proof This is a pretty standard result in homological algebra. See, 
for example, Cartan-Eilenberg [2, XV.71. In the notation developed 
there, we set H( p, 4) = H*(P, FF/9$) for all pairs ( p, 4) such that 
-00 < p < q < + co, where K, = 9 and SW = 0. Axiom (SP5) 
is a consequence of the fact that cohomology commutes with direct 
limits. The &-differentials are the connecting homomorphisms of the 
short exact sequences: 

The abutment of the spectral sequence has a filtration given by 

Hn(P, F’>* = Im(H”(P, Fp) -+ H”(P, 9)) 

= Ker(H”(P, 9) -+ H”(P, 9”“)). 

The most interesting special case of Theorem 4.1 is that in which P is 
an ordered set for which the Whitney numbers are defined and for which 
P” = (z E P j Y(X) < s>. Then PS+l - P” is the set of elements of P 
of rank s. Since PS+l - P” is an antichain, i.e., a totally unordered jsubset 
of P, the sheaf 9Qe+r has a particularly simple form; namely, it is 
isomorphic to the direct sum of the sheaves (F(V,))(x) as x ranges over 
the elements of P of rank s. The following result is then an immediate 
consequence of Lemma 3.1, Theorem 4.1 and the remarks at the end 
of Section 3. 

COROLLARY 4.2. Let P be an ordered set for which the Whitney 
numbers are dejned. Let F be any sheaf on P. Then there is a fourth 
quadrant spectral sequence with 

for p > 1, 

for p = 1 and q = -1, 

in all other cases, 

such that E$‘gq 3 H”(P, 9). Moreover, if F( V,) g Z for all x E P, then 
for p > 0 we have x(E,P 7 *) = w9 . 

Now in the special case of an ordered set P for which p is a geometric 
lattice, we can use Proposition 3.4 to give an explicit computation of the 
groups in Corollary 4.2. 
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COROLLARY 4.3. Let P be an ordered set for which P is a geometric 
lattice. Let 9 be a sheaf on P. Then there is a fourth quadrant spectral 
sequence with 

0 in all other cases, 

such that EIpfq * Hn(P, 9). iMoreover, the spectral sequence degenerates 
at the E,-term with HP-l(P, 9) e E?j’-l for p >, 1. 

The spectral sequence in Corollary 4.3, therefore, has a particularly 
simple form: E$‘-’ is the pth cohomology group of the complex ET$-’ at 
which point the spectral sequence degenerates. The differentials of the 
complex E:p-l are given by the connecting homomorphisms of the short 
exact sequences in the proof of Theorem 4.1. When these sequences split, 
e.g., when % = -W;; , these differentials vanish, and we have Ef9-l E 
E&+l E HP-l(P, 9). Th e o f 11 owing result is then immediate. 

THEOREM 4.4. Let P be an ordered set for which P is a geometric lattice. 
Let 9 be a sheaf on P all of whose stalks are isomorphic to the same abelian 
group G. Then there is a structure of a complex on H*(P, Wo) such that its 
cohomology is H*(P, 9). 

5. STANDARD RESOLUTIONS 

Let % be a sheaf on the ordered set P. The support of % is the subset 
j % / = (x E P / %(V,) # 0} of P. Suppose also that P is locally finite. 
An element f of I(P) is said to be transitive if, for x < y < z in P, it 
satisfies 

f(% Y)l(Y, 4 = f(% 4. 

Suppose that all the stalks of % are free abelian groups of ranks 0 or 1. 
If we fix a choice of isomorphism of each stalk %( I’,) with Z, for x E / % 1, 
then % defines a transitive element of I(P) as follows. For x < y in 
1 % 1, f (x, y) is the image of 1 E %( V,) under the restriction %( I’,) -+ 
%(I’,). For x <y in P and either x$1%\ or y$l%I, we define 
f (x, y) = 0. Conversely, every transitive element of I(P) defines such 
a sheaf on P. 
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Now, if we allow the choice of isomorphisms of the stalks of 9 with 2, 
on the support of .9, to vary, then the element of I(P) defined above may 
change. Let H be the subgroup of I(P) consisting of invertible diagonal 
elements, i.e., consisting of the elements h E I(P) for which h(x, X) = f 1 
for x E P and for which h(x, y) = 0 for x < y in P. Then the conjugacy 
class off by elements of H is, nevertheless, uniquely determined by the 
sheaf 9; and, conversely, such a conjugacy class determines the sheaf 9 
uniquely, up to isomorphism. The sheaf W corresponds to the identity 
element 6 of I(P), while the sheaf Z of locally constant functions on P 
corresponds to the zeta function < E I(P). 

Let .9 be a sheaf on P as above with f a corresponding transitive 
element of I(P). Let C,(P,f) b e a chain complex defined as follows. 
C,(P, f) is the subgroup of C,(P, Z) generated by n-simplices of P 
whose maximum element lies in / 9 I. The differential d,: C,(P, f) 4 
C,-l(P, f) is defined by 

n-1 
df(UO < *** < a,) = c (-l)i (a0 < ... < 2, < *.* < a,) 

i=O 

+ (-l)“f(un-l, a&, < **- -=l 44, 

for each n-simplex (a, < *** < a,) E C,(P, f). The Z-dual of this 
complex is denoted C*(P, f ). The differential on Cn(P, f) is then given by 

= to (-l)i +zo < ..* < cii < --* < %,I) 

+ (-l)“+‘f(an , a,,,) 4&J < *** =C 4, 

for u E F(P, f) and (a0 < *a* < a,,,) an (n + I)-simplex in C,+,(P, f ). 

PROPOSITION 5.1. Let P be a locally jinite ordered set, and let F be a 
sheaf on P all of whose stalks are free abelian groups of rank 0 or 1. Let 
f E I(P) be a transitive element which corresponds to 9. Then 

H*(P, 9) s H*(C*(P, f)). 

Proof. Deheuvels [S, Section 101. 
For example, when 9 = %‘, H*(P, W) is the cohomology of the 
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cochain complex C*(P, 6). Explicitly, C*(P, 6) is the same as C*(P, Z) 
as a group, but the differential in C*(P, 6) is 

= go (-l)i c& < ... < di < ... < a,,,), 

for oi E P(P, Z) and for each (n + I)-simplex (a, < **a < a,,,) in 

c?z,,(e Z). 
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